Uncovering botnets in IoT sensor networks: a hybrid self-organizing maps approach
Abstract
The integration of the internet of things (IoT) has revolutionized diverse industries, introducing interconnected devices and IoT sensor networks for improved data acquisition. However, this connectivity exposes IoT ecosystems to emerging threats, with botnets posing significant risks to security. This research aims to develop an innovative solution for detecting botnets in IoT sensor networks. Leveraging insights from existing research, the study focuses on designing a hybrid self-organization map (SOM) Approach that integrates lightweight deep learning (DL) techniques. The objective is to enhance detection accuracy by exploring various DL architectures. Proposed methodology aims to balance computational efficiency for resource-constrained IoT devices while improving the discriminatory power of the detection system. The study advancing IoT cybersecurity and addresses critical challenges in botnet detection within IoT sensor networks. The testing of the artificial neural networks (ANN) classifier involves three models, each represented based on parameters related to the construction of the training models. The most effective ANN achieves 86%, works on anomaly intrusion detection systems (AIDS).
Keywords
Deep learning architectures; AIDS; Detecting botnets; Hybrid self-organizing maps; IoT
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v34.i3.pp1840-1857
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).