Improvement of horizontal streak on disparity map thru parameter optimization for stereo vision algorithm

Melvin Gan Yeou Wei, Rostam Affendi Hamzah, Nik Syahrim Nik Anwar, Adi Irwan Herman, Jamil Abedalrahim Jamil Alsayaydeh


In this paper, an improved local based stereo vision disparity map (SVDM) algorithm is proposed. The proposed local based SVDM algorithm include four stages and they are matching cost computation, cost aggregation disparity optimization and disparity refinement. The matching cost computation started by combining pixel to pixel matching techniques, which are absolute difference (AD) and gradient matching (GM) in producing the initial disparity map. Next, the cost aggregation uses minimum spanning tree (MST) segmentation, which equipped with edge preserving properties and noise filtering. Then, disparity optimization uses local approach with winner-take-all (WTA) technique. At the final stage, disparity refinement uses bilateral filter (BF) with weighted median (WM), which can improve the disparity map through noise removing and edges preserving. Then, the research continues to optimize the proposed local based SVDM algorithm through parameters optimization in obtaining the final disparity map. Here, multiple parameters from the proposed SVDM algorithm are manipulated and they are constant values for GM and several constant parameters in BF. By selecting the optimum parameter values, the performance of the proposed SVDM algorithm increased, especially robustness towards the horizontal streaks.


Absolute differences; Gradient matching; Horizontal streak; Minimum spanning tree; Parameter optimization; Stereo vision

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics