Evaluating the impact of downsampling on 3D MRI images segmentation results based on similarity metrics

Aziz Fajar, Riyanarto Sarno, Chastine Fatichah


Medical imaging plays a crucial role in diagnosing patient conditions, with magnetic resonance imaging (MRI) standing as a significant modality for numerous years. However, leveraging convolutional neural network (CNN) architectures like U-Net and its variations for anatomical segmentation demands considerable memory, particularly when working with full 3D image sets. Therefore, downsampling 3D MRIs proves advantageous in reducing memory consumption. Nevertheless, downsampling leads to a reduction in voxel count, potentially impacting the performance of commonly used segmentation metrics. The jaccard similarity index (JSI), dice similarity coefficient (DSC), and structural similarity index (SSIM) are extensively employed in image segmentation contexts. Hence, this study employs all three metrics to assess downsampled images and evaluate the robustness of the metrics when used to evaluate the downsampled 3D MRI images. The results show that JSI and DSC are more robust than SSIM when handling the downsampled data.


3D image segmentation; 3D MRI; Deep learning; Image downsampling; Similarity measurement

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v35.i3.pp1590-1600


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics