Cloud-based machine learning algorithms for anomalies detection

Raveendra N Amarnath, Gurumoorthi Gurulakshmanan


Gradient boosting machines harnesses the inherent capabilities of decision trees and meticulously corrects their errors in a sequential fashion, culminating in remarkably precise predictions. Word2Vec, a prominent word embedding technique, occupies a pivotal role in natural language processing (NLP) tasks. Its proficiency lies in capturing intricate semantic relationships among words, thereby facilitating applications such as sentiment analysis, document classification, and machine translation to discern subtle nuances present in textual data. Bayesian networks introduce probabilistic modeling capabilities, predominantly in contexts marked by uncertainty. Their versatile applications encompass risk assessment, fault diagnosis, and recommendation systems. Gated recurrent units (GRU), a variant of recurrent neural networks, emerges as a formidable asset in modeling sequential data. Both training and testing are crucial to the success of an intrusion detection system (IDS). During the training phase, several models are created, each of which can recognize typical from anomalous patterns within a given dataset. To acquire passwords and credit card details, "phishing" usually entails impersonating a trusted company. Predictions of student performance on academic tasks are improved by hyper parameter optimization of the gradient boosting regression tree using the grid search approach.


Bayesian networks; Gated recurrent units; Gradient boosting machines; Intrusion detection system; Word2Vec

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics