Fast region based convolutional neural network ResNet-50 model for on tree Mango fruit yield estimation

Neethi Managali Vasanth, Raviraj PPandian


The foundation of the Indian economy is agriculture, the amount of land available for agricultural activities has decreased due to numerous factors. To fulfill the demands of the expanding population, the maximum yield must be produced on the least amount of land that is accessible. To overcome the challenges of agriculture, many researches have been carried out to adopt technology into agriculture. As India is one of the world's top producers of Mangoes and has a vast market, and has encouraged extensive Mango farm development. Automatic yield estimation of Mangoes in the early stage is important to improve the quality and quantity of production which improves both domestic and export markets. The work proposes a fast region (FR) based convolutional neural network (CNN) residual network (ResNet)-50 model for efficient deep learning-based Mango crop yield estimation system to count the Mango fruit from the images of individual trees. A temporal Mango fruit database is used to estimate the yield of on tree Mango fruits, and a framework is provided to estimate Mango fruit yield in red, green, and blue (RGB) image. This experiment shows that the suggested FRCNN ResNet-50 model attained a better accuracy of 98.20% on the proposed dataset.


Agricultural felds; Convolutional neural network; Deep learning; Machine learning; Mango estimation; ResNet-50

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics