Application of remote monitoring of biosignals and geolocation with a Wearable for patients with sequelae of the coronavirus

Santiago Linder Rubiños Jimenez, Mario Alberto Garcia Perez, Eduardo Nelson Chávez Gallegos, Linett Angélica Velasquez Jimenez, Niko Alain Alarcon Cueva, Mauro Bernardo Sanchez Cabrera


Several patients who have overcome coronavirus disease (COVID-19) have been left with cardiovascular and pulmonary sequelae and most medical centers lack a remote monitoring system for each patient that notifies them of any complications during rehabilitation. The objective of this research was to implement a Wearable that monitors the patient's health and alerts in case of detecting any anomaly. For this reason, a Wearable was developed that displays the patient's heart rate, oxygen saturation level and body temperature on the Light Emitting Diode (LCD) and the application mobile, sending an alert and geolocation message if anomalies are detected in vital signs. The standard deviation of heart rate, temperature and oxygen saturation was obtained, which was 1.4930, 0.1558 and 0.4364 in the rest stage, respectively, and 6.3442, 0.2365 and 0.9186 in the physical activity stage respectively with a maximum duration of 42 hours and 52 minutes of battery, managing to send alert messages and store the information in the cloud, which allows to conclude that the Wearable can facilitate the management of the database and the location of the patient, that the measurement error increases with physical activity, and that battery life varies with the number of biosignal readings per hour.


Wearable; Post-COVID-19; Biosignals; MIT APP inventor; Internet of Things

Full Text:



A. I. Siam et al., “Secure Health Monitoring Communication Systems Based on IoT and Cloud Computing for Medical Emergency Applications,” Comput. Intell. Neurosci., vol. 2021, 2021, doi: 10.1155/2021/8016525.

M. Z. Yan, M. Yang, and C. L. Lai, “Post-COVID-19 Syndrome Comprehensive Assessment: From Clinical Diagnosis to Imaging and Biochemical-Guided Diagnosis and Management,” Viruses, vol. 15, no. 2, 2023, doi: 10.3390/v15020533.

A. Prabhakar, Sahil, A. Dadhich, and D. Sharma, “Remote Monitoring System through IoT and WSN for Congestion Free Access,” Int. J. Recent Technol. Eng., vol. 8, no. 6, pp. 5274–5278, 2020, doi: 10.35940/ijrte.f9518.038620.

K. K. B. Cardins, S. A. da C. Uchôa, L. V. e. Oliveira, and C. H. S. de M. Freitas, “Care of People with Post-COVID-19 Sequelae in the Scope of Primary Health Care: Scoping Review Protocol,” Int. J. Environ. Res. Public Health, vol. 19, no. 21, 2022, doi: 10.3390/ijerph192113987.

E. del S. Goicochea Ríos, O. M. Córdova Paz Soldán, N. I. Gómez Goicochea, and J. Vicuña Villacorta, “Post-infection sequelae by COVID 19 in patients at Hospital I Florencia de Mora. Trujillo, Peru,” Rev. la Fac. Med. Humana, vol. 22, no. 1, pp. 754–764, 2022, doi: 10.25176/rfmh.v22i4.5045.

P. S. Engineering, B. Communication, and A. License, “Design of a Pulse Oximeter with Altitude Measurement Bluetooth Communication and Android Application,” Prim. Sci. Eng., vol. 1, no. 3, pp. 2–15, 2022, doi: 10.56831/psen-01-014.

C. Rosales Márquez, E. Félix Castillo Saavedra, and C. Rosales Márquez Universidad César Vallejo Perú, “Secuelas pos-COVID-19 a largo plazo. Un estudio de revisión,” MediSur, vol. 20, no. 4, pp. 733–744, 2022. [Online]. Available:

U. A. Contardi, M. Morikawa, B. Brunelli, and D. V. Thomaz, “MAX30102 Photometric Biosensor Coupled to ESP32-Webserver Capabilities for Continuous Point of Care Oxygen Saturation and Heartrate Monitoring ,” Eng. Proc., vol. 16, no. 1, pp. 1–5, 2022, doi: 10.3390/IECB2022-11114.

S. Sakphrom, T. Limpiti, K. Funsian, S. Chandhaket, R. Haiges, and K. Thinsurat, “Intelligent medical system with low-cost wearable monitoring devices to measure basic vital signals of admitted patients,” Micromachines, vol. 12, no. 8, pp. 1–17, 2021, doi: 10.3390/mi12080918.

N. Chinnamadha, R. Z. Ahmed, and K. Kalegowda, “Development of health monitoring system using smart intelligent device,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1381–1387, 2022, doi: 10.11591/ijeecs.v28.i3.pp1381-1387.

A. B. Gala, M. T. B. Pope, M. Leo, T. Lobban, and T. R. Betts, “NICE atrial fibrillation guideline snubs wearable technology: A missed opportunity?,” Clin. Med. J. R. Coll. Physicians London, vol. 22, no. 1, pp. 77–82, 2022, doi: 10.7861/clinmed.2021-0436.

M. Shabaan et al., “Survey: Smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1–16, 2020, doi: 10.1186/s12911-020-01199-7.

J. L. Moraes, M. X. Rocha, G. G. Vasconcelos, J. E. Vasconcelos Filho, V. H. C. de Albuquerque, and A. R. Alexandria, “Advances in photopletysmography signal analysis for biomedical applications,” Sensors (Switzerland), vol. 18, no. 6, pp. 1–26, 2018, doi: 10.3390/s18061894.

S. Jain, V. Maurya, and M. Bisht, “An IoT Based Healthcare Monitoring System using Wemos-D1,” Sensors, vol. 14, no. 03, pp. 4008–4011, 2020, doi: 10.47750/pnr.2023.14.03.19.

Q. Alsahi and A. Marhoon, “Design Health care system using Raspberry Pi and ESP32,” Int. J. Comput. Appl., vol. 177, no. 36, pp. 33–38, 2020, doi: 10.5120/ijca2020919863.

S. Luthfiyah, E. R. Ramadhani, T. B. Indrato, A. Wongjan, and K. O. Lawal, “Vital Signs Monitoring Device with BPM and SpO2 Notification Using Telegram Application Based on Platform,” Indones. J. Electron. Electromed. Eng. Med. Informatics, vol. 4, no. 1, pp. 1–7, 2022, doi: 10.35882/ijeeemi.v4i1.1.

A. Pazienza and D. Monte, “Introducing the Monitoring Equipment Mask Environment,” Sensors, vol. 22, no. 17, pp. 0–15, 2022, doi: 10.3390/s22176365.

S. Valenti et al., “Wearable Multisensor Ring-Shaped Probe for Assessing Stress and Blood Oxygenation: Design and Preliminary Measurements,” Biosensors, vol. 13, no. 4, 2023, doi: 10.3390/bios13040460.

D. Asiain, J. Ponce de León, and J. R. Beltrán, “MsWH: A Multi-Sensory Hardware Platform for Capturing and Analyzing Physiological Emotional Signals,” Sensors, vol. 22, no. 15, pp. 1–25, 2022, doi: 10.3390/s22155775.

M. Noguera, B. Millán, J. J. Pérez-Paredes, J. M. Ponce, A. Aquino, and J. M. Andújar, “A new low-cost device based on thermal infrared sensors for olive tree canopy temperature measurement and water status monitoring,” Remote Sens., vol. 12, no. 4, 2020, doi: 10.3390/rs12040723.

I. Potamitis, I. Rigakis, N. A. Tatlas, and S. Potirakis, “In-vivo vibroacoustic surveillance of trees in the context of the IoT,” Sensors (Switzerland), vol. 19, no. 6, pp. 1–14, 2019, doi: 10.3390/s19061366.

D. A. Angamarca-Avendaño, J. F. Saquicela-Moncayo, B. H. Capa-Carrillo, and J. C. Cobos-Torres, “Charge Equalization System for an Electric Vehicle with a Solar Panel,” Energies, vol. 16, no. 8, 2023, doi: 10.3390/en16083360.

D. Wang, Y. Bao, and J. Shi, “Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended kalman filter,” Energies, vol. 10, no. 9, 2017, doi: 10.3390/en10091284.

A. C. da Silva, W. de S. Rodrigues, B. P. Gonçalves, M. A. da Cruz, R. P. Gomes, and D. B. de Alencar, “Locator Bracelet with QR Code for Elderly People with Alzheimer’s,” Int. J. Adv. Eng. Res. Sci., vol. 7, no. 6, pp. 81–86, 2020, doi: 10.22161/ijaers.76.10.

M. M. Islam, A. Rahaman, and M. R. Islam, “Development of Smart Healthcare Monitoring System in IoT Environment,” SN Comput. Sci., vol. 1, no. 3, 2020, doi: 10.1007/s42979-020-00195-y.

N. Al Mudawi, “Integration of IoT and Fog Computing in Healthcare Based the Smart Intensive Units,” IEEE Access, vol. 10, pp. 59906–59918, 2022, doi: 10.1109/ACCESS.2022.3179704.

N. A. Jasman, M. F. I. M. Jalil, A. Mukhtar, K. S. M. Sahari, and M. E. Rusli, “IoT-Based Obstacle Detection System for Visually Impaired Person with Smartphone Module,” J. Adv. Inf. Technol., vol. 13, no. 4, pp. 368–373, 2022, doi: 10.12720/jait.13.4.368-373.

I. Ruiz-Rube, J. M. Mota, T. Person, J. M. R. Corral, and J. M. Dodero, “Block-based development of mobile learning experiences for the internet of things,” Sensors (Switzerland), vol. 19, no. 24, 2019, doi: 10.3390/s19245467.

A. A. Mustofa, Y. A. Dagnew, P. Gantela, and M. J. Idrisi, “SECHA: A Smart Energy-Efficient and Cost-Effective Home Automation System for Developing Countries,” J. Comput. Networks Commun., vol. 2023, 2023, doi: 10.1155/2023/8571506.

K. Sangeethalakshmi, A. Preethi, U. Preethi, S. Pavithra, and P. Shanmuga, “Patient health monitoring system using IoT,” Mater. Today Proc., vol. 80, no. 3, pp. 2228–2231, 2021, doi: 10.1016/j.matpr.2021.06.188.

E. Kałamajska, J. Misiurewicz, and J. Weremczuk, “Wearable Pulse Oximeter for Swimming Pool Safety,” Sensors, vol. 22, no. 10, 2022, doi: 10.3390/s22103823.

P. Peris-Lopez, L. González-Manzano, C. Camara, and J. M. de Fuentes, “Effect of attacker characterization in ECG-based continuous authentication mechanisms for Internet of Things,” Futur. Gener. Comput. Syst., vol. 81, pp. 67–77, 2018, doi: 10.1016/j.future.2017.11.037.

K. Rawal and G. Gabrani, “Healthcare Smartwatch for Monitoring Elderly,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 2, pp. 737–741, 2019, doi: 10.35940/ijitee.b6834.129219.

A. Arbillaga-Etxarri et al., “Respiratory physiotherapy in post-COVID-19: a decision-making algorithm for clinical practice,” Open Respir. Arch., vol. 4, no. 1, 2022, doi: 10.1016/j.opresp.2021.100139.

A. Serrano-Cumplido et al., “Pulsioximetría: papel en el paciente COVID-19 domiciliario,” Med. Fam. Semer., vol. 48, no. 1, pp. 70–77, 2022, doi: 10.1016/j.semerg.2021.03.004.

I. Gorczewska, A. Szurko, A. Kiełboń, A. Stanek, and A. Cholewka, “Determination of Internal Temperature by Measuring the Temperature of the Body Surface Due to Environmental Physical Factors—First Study of Fever Screening in the COVID Pandemic,” Int. J. Environ. Res. Public Health, vol. 19, no. 24, 2022, doi: 10.3390/ijerph192416511.

H. J. Davies, I. Williams, N. S. Peters, and D. P. Mandic, “In-ear spo2: A tool for wearable, unobtrusive monitoring of core blood oxygen saturation,” Sensors (Switzerland), vol. 20, no. 17, pp. 1–12, 2020, doi: 10.3390/s20174879.

B. J. Singstad et al., “Estimation of heart rate variability from finger photoplethysmography during rest, mild exercise and mild mental stress,” J. Electr. Bioimpedance, vol. 12, no. 1, pp. 89–102, 2021, doi: 10.2478/JOEB-2021-0012.

W. Te Ho, Y. J. Yang, and T. C. Li, “Accuracy of wrist-worn wearable devices for determining exercise intensity,” Digit. Heal., vol. 8, 2022, doi: 10.1177/20552076221124393.

R. B. Narvaez, D. M. Villacis, T. M. Chalen, and W. Velasquez, “Heart rhythm monitoring system and IoT device for people with heart problems,” in 2017 International Symposium on Networks, Computers and Communications, ISNCC 2017, 2017. doi: 10.1109/ISNCC.2017.8072004.

N. Herscovici et al., “m-health e-emergency systems: Current status and future directions,” IEEE Antennas Propag. Mag., vol. 49, no. 1, pp. 216–231, 2007, doi: 10.1109/MAP.2007.371030.

B. Zhang, H. Ren, G. Huang, Y. Cheng, and C. Hu, “Predicting blood pressure from physiological index data using the SVR algorithm 08 Information and Computing Sciences 0801 Artificial Intelligence and Image Processing,” BMC Bioinformatics, vol. 20, no. 1, pp. 1–15, 2019, doi: 10.1186/s12859-019-2667-y.

S. Syaifudin, T. Triwiyanto, D. A. Harditamara, and F. Masood, “Pulse Oximeter Design for SpO2 and BPM Recording on External Memory to Support the Covid-19 Diagnosis,” J. Teknokes, vol. 15, no. 3, pp. 147–153, 2022, doi: 10.35882/teknokes.v15i3.303.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics