Semi-Supervised Affine Alignment of Manifolds
Abstract
High dimensional data is usually produced by the source that only enjoys a limited number of degrees of freedom. Manifold leaning technique plays an important part in finding the correlation among the high dimensional data datasets. By making use of manifold alignment, the paired mapping relationship can be explored easily. However, the common manifold alignment algorithm can only give the mapping result of the training set, and cannot deal with a new coming point. A new manifold alignment algorithm is proposed in this paper. The benefit of our algorithm is two fold: First, the method is a semi-supervised approach, which makes better use of the local geometry information of the unpaired points and improves the learning effect when the labeled proportion is very low. Second, an extended spectral aggression trick is used in the algorithm, which can produce a linear mapping between the raw data space and the aligned space. The experiments result shows that, the correlation mapping can be precisely obtained, the hidden space can be aligned effectively, and the cost of mapping a coming point is very low.
Keywords
Full Text:
PDFRefbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).