An improved clustering based on K-means for hotspots data

Rani Rotul Muhima, Muchamad Kurniawan, Septiyawan Rosetya Wardhana, Anton Yudhana, Sunardi Sunardi, Mitra Adhimukti


Riau province is one of the provinces in Indonesia where forest fires frequently occur every year. Hotspot data is geothermal points and they can be utilized as an indicator of forest fires. Clustering’s method can be used to analyze potential forest fires from hotspot data’s cluster pattern. In this study, hybrid genetic algorithm polygamy with K-means (GAP K-means) was used for hotspot data clustering. GA polygamy was used to determine the initial centroid of K-means. It was used to solve the sensitivity of K-means to the initial centroid, and to find the optimal solution faster. Experimentally compared the performance of GAP K-means, GA K-means, and K-means on the hotspots data, two artificial datasets, and three real-life datasets. Sum square error (SSE), davies bouldin index (DBI), silhouette coefficient (SC) and F-measure are used to evaluation clustering. Based this experiment, GAP K-means outperforms than K-means but GAP K-means still not fast to achieve convergent than GA K-means.


Cluster center; Clustering; Genetic algorithm polygamy; Hotspot data; K-means

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics