An improved features selection approach for control chart patterns recognition
Waseem Alwan, Nor Hasrul Akhmal Ngadiman, Adnan Hassan, Mohd Syahril Ramadhan Mohd Saufi, Azanizawati Ma’aram, Ibrahim Masood
Abstract
Control chart patterns (CCPs) are an essential diagnostic tool for process monitoring using statistical process control (SPC). CCPs are widely used to improve production quality in many engineering applications. The principle is to recognize the state of a process, either a stable process or a deterioration to an unstable process. It is used to significantly narrow the set of possible assignable causes by shortening the diagnostic process to improve the quality. Machine learning techniques have been widely used in CCPs. Artificial neural networks with multilayer perceptron (ANN-MLP) are one of the standard tools used for this purpose. This paper proposes an improved features selection method to select the best features as input representation for control chart patterns recognition. The results demonstrate that the proposed approach can effectively recognize CCPs even for small patterns with a mean shift of less than 1.5 sigma. The dimensional reduction was achieved by employing Relief, correlation, and Fisher algorithms (RCF) for feature selection and (ANN-MLP) as a classifier (RCF-ANN). This study provides an experimental result that compares the performance before and after dimensional reduction.
Keywords
Artificial neural network; Control chart patterns; Correlation coefficient; Feature selection algorithm; Relief algorithm
DOI:
http://doi.org/10.11591/ijeecs.v31.i2.pp734-746
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics