Segmentation of brain tissue using improved kernelized rough-fuzzy c-means technique

Hiyam Hatem Jabbar, Raed Majeed Muttasher, Ali Fattah Dakhil


Brain magnetic resonance imaging (MRI) data is a hot topic in the domains of biomedical engineering and machine learning. Without locating anomalies, such as tumors and edema, radiologists and other medical experts cannot effectively recommend or administer therapy for patients. Having three different magnetic resonance techniques (T1 weighted, T2 weighted, and T3 weighted), MRI can produce detailed multimodal scans of different human brain tissues with varying contrast, which can help pinpoint the source of any abnormalities. The cerebrospinal fluid (CSF), white matter (WM), and grey matter (GM) are all components of the brain, and their boundaries are sometimes hazy and difficult to nail down. In light of the problems above, this paper makes an effort to tackle issues like: i) the noise that exists in the brain datasets for MRI, ii) the fuzziness, uncertainty, overlap, indiscernibility of complex brain tissue regions, iii) the inability of traditional unsupervised methods to reliably distinguish between various brain tissue locations, and iv) ineffective performance. We propose some robust techniques by utilise spatial contextual data, a rough set, a fuzzy set, and ultimately a fuzzy set to steer the clustering process in a better direction, allowing it to deal with likely noise, outliers, and other artifacts.


Brain MRI; Brain tumor; Fuzzy set; Image segmentation; KRFCM algorithm; Spatial information

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics