Prediction of heart disease outcomes using machine learning classifier

Kehinde Marvelous Adeniyi, Olasunkanmi James Oladapo, Timothy Oluwaseun Araoye, Taiwo Felix Adebayo, Sochima Vincent Egoigwe, Mathew Chinedu Odo


The responsibility of heart organ is to supply blood to every part of the human body. The method of diagnose heart disease in medical hospital is extremely costly and also consume doctors time of operations. This research work applied forward, backward, and enter method for selection of variables in the logistic regression model, sensitivity, specificity, accuracy, and area under characteristic curve (AUC). The logistic regression model, at 5% level of significance with the enter method is used which denotes that the risk variables associated with heart disease gives accuracy of 87.9%. The preferred model of variable selection method used was the model from forward which has 88.6%. Also using the forward method of variables selection, the process produces 10 models with the best accuracy of 88.6%. The specificity and sensitivity of the analysis model was 91.4% and 85.6%. Also, the misclassification rate was also 11.4%, Positive predicted value is 87% and negative predicted value is 90.5%. Finally, the suitable model to predict the heart disease is from the forward method of variables selection and the positive likelihood ratio is 6 i.e the patients are 6 times likely to have the heart disease and the model has AUC value of 1.


Heart disease; Logistic regression; Machine learning classifier forward and backward method; Modeling

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics