Improvement of electromagnetic torque of BLDC motor for electrical cutter application

Muhammad Izanie Kahar, Raja Nor Firdaus Kashfi Raja Othman, Aziah Khamis, Kasrul Abdul Karim, Fairul Azhar Abdul Shukor, Ahmad Fuad Ab Ghani, Rofizal Mat Rejab


As the advancement of brushless direct current (BLDC) motor is rising, it has been an advantage to use the motor for a wide range of applications. Its robustness and torque development have benefited small applications, such as the agriculture cutter. However, dropping performances of conventional BLDC are affected by the shape of the rotor that has unused magnetic flux. Therefore, this research aimed to analyze the electromagnetic torque by reducing the unused flux from an electromagnetic point of view. Two BLDC models with different slot-pole numbers and rotor types were modeled and simulated with equal permanent magnet volume, and magnetomotive force (MMF). Finite element method (FEM) software was used to compute back electromotive force (BEMF), cogging torque, electromagnetic torque, and magnetic flux density of the BLDC models. As a result, 9/8 slot-pole with zero ferromagnetic underneath the permanent magnet had the highest BEMF and torque produced compared to the conventional type, with a percentage difference of 27%. In conclusion, this research presents the motor that had an improvement of electromagnetic torque for electrical cutter application.


BLDC; Conventional; Hollow; Magnetic flux; Rotor

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics