Weed detection by using image processing
Vijaykumar Bidve, Sulakshana Mane, Pradip Tamkhade, Ganesh Pakle
Abstract
In agricultural regions, the procedure of weed removal is crucial. Weed removal in the classic way, takes longer and requires greater physical effort. The idea is to eliminate weeds from agricultural fields automatically. The proposed study uses a deep learning algorithm to detect weeds growing between crops. Deep learning method also known as deep learning is used to analyse the main properties of agricultural photographs. Weeds and crops have been identified using the dataset. Convolutional neural network (CNN) uses a completely attached surface with rectified linear units (RELU) to differentiate weed and crop. It extracts features of crop using deep learning. The CNN uses features of proceeded image to extract region of interest (ROI). A deep learning network features are used to identify crop. In total of 1280 images are used for testing the system, and 10 images are used to find the confidence score.
Keywords
Convolutional neural network; Image processing; Region of interest; Shape features; Weed classification
DOI:
http://doi.org/10.11591/ijeecs.v30.i1.pp341-349
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics