Reclust: an efficient clustering algorithm for mixed data based on reclustering and cluster validation
Abstract
Clustering is a significant approach in data mining, which seeks to find groups or clusters of data. Both numeric and categorical features are frequently used to define the data in real-world applications. Several different clustering algorithms are proposed for the numerical and categorical datasets. In clustering algorithms, the quality of clustering results is evaluated using cluster validation. This paper proposes an efficient clustering algorithm for mixed numerical and categorical data using re-clustering and cluster validation. Initially, the mixed dataset is clustered with four traditional clustering algorithms like expectation-maximization (EM), hierarchical cluster (HC), k-means (KM), and self-organizing map (SOM). These four algorithms are validated, and the best algorithm is selected for re-clustering. It is an iterative process for improving the quality of cluster results. The incorrectly clustered data is iteratively re-clustered and evaluated based on the cluster validation. The performance of the proposed clustering method is evaluated with a real-time dataset in terms of purity, normalized mutual information, rand index, precision, and recall. The experimental results have shown that the proposed reclust algorithm achieves better performance compared to other clustering algorithms.
Keywords
Clustering; Hierarchical cluster; K-means; Mixed data; Numerical and categorical data; Re-clustering
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v29.i1.pp545-552
Refbacks
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).