Convolution neural network model for fundus photograph quality assessment

Sinan S. Mohammed Sheet, Tian-Swee Tan, Muhammad Amir Bin As'ari, Wan Hazabbah Wan Hitam, Qi Zhe Ngoo, Joyce S.Y. Sia, Kelvin Ling Chia Hiik

Abstract


The excellent quality of color fundus photograph is crucial for the ophthalmologist to process the correct diagnosis and for convolutional neural network (CNN) models to optimize output classification. As a result of main causes as acquire devises efficiency and experience of a physician most fundus photographs can have uneven illuminance, blur, and bad contrast, in addition to micro-features of retinal diseases, which need to force their contrast. Fundus photograph quality assessment method is proposed to find out the perfect enhanced color fundus Technique in fundoscopy photographs-based CNN model. Five photograph quality measurements, in addition to five CNN metrics, were used as standard in this study. In this research innovative approach combining photograph quality measurement and CNN metrics analysis is proposed to find out the best enhance method that is set for the multiclass CNN model. The contrast enhancement techniques are evaluated using 267 color fundus photographs divided into three retina diseases cases were downloaded from the open-source database “FIGSHARE”. The study outcome showed that the presented system (single-CNN) can determine well the contrast enhancement method, as well as the low-quality fundus photograph then it can boost CNN metrics to achieve superior.

Keywords


Contrast enhancement; CNN model; CNN metrics; Fundus photograph; Photograph quality assessment

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v26.i2.pp915-923

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics