Distant temperature and humidity monitoring: prediction and measurement

Farrukh Hafeez, Usman Ullah Sheikh, Attaullah Khidrani, Muhammad Akram Bhayo, Saleh Masoud Abdallah Altbawi, Touqeer Ahmed Jumani

Abstract


Sensing environmental measuring parameters has a pivotal role in our everyday lives. Most of our daily life activities depend upon environmental conditions. Accurate information about these parameters also helps in several industrial applications like ventilation rate calculation, energy prediction, stock maintenance in warehouses, and saving from harmful conditions. The emergence of machine learning can make it easy to predict such time series problems. This paper describes the design of a remotely controlled robotic car for measuring and predicting humidity and temperature. A customized app for accessing the robotic car is designed to indicate predicted and realtime measured values of humidity and temperature. A sensor installed builtin helps in the measurement. The recurrent neural network (RNN) model is used to predict humidity and temperature. For this purpose, experiments are carried out in both outdoor and indoor settings. Accuracy of 85% and 90% is achieved in an outdoor environment and indoor settings.

Keywords


Android app; Recurrent neural network; Remote sensing; Robotic car; Sensor;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v24.i3.pp1405-1413

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics