Rapid bacterial colony classification using deep learning
Abstract
Bacterial colonies infection is one of the causes of bloodstream disease, and it can be a fatality. Therefore, medical diagnoses require fast identification and classification of organisms. Artificial Intelligence with deep learning (DL) can now be developed as a rapid bacterial classification. The research aims to combine deep learning and support vector machines (SVM). The ResNet-101 model of the DL algorithm extracted the image’s features using transfer learning then classified by the SVM classifier. According to the experimental results, this model had 99.61% accuracy, 99.58% recall, 99.58% precision, and 99.97% specificity. The technique presented might enhance clinical decision-making.
Keywords
Bacterial colonies; Deep learning; Transfer Learning; Support Vector Machine
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v26.i1.pp352-361
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES).