An effective face recognition method using guided image filter and convolutional neural network

Yallamandaiah S., Purnachand N.


In the area of computer vision, face recognition is a challenging task because of the pose, facial expression, and illumination variations. The performance of face recognition systems reduces in an unconstrained environment. In this work, a new face recognition approach is proposed using a guided image filter, and a convolutional neural network (CNN). The guided image filter is a smoothing operator and performs well near the edges. Initially, the ViolaJones algorithm is used to detect the face region and then smoothened by a guided image filter. Later the proposed CNN is used to extract the features and recognize the faces. The experiments were performed on face databases like ORL, JAFFE, and YALE and attained a recognition rate of 98.33%, 99.53%, and 98.65% respectively. The experimental results show that the suggested face recognition method attains good results than some of the state-of-the-art techniques.


Computer vision; Convolutional neural network; Face recognition; Guided image filter;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics