Hybrid features for object detection in RGB-D scenes

Sari Awwad, Bashar Igried, Mohammad Wedyan, Mohammad Alshira'H


Object detection is considered a hot research topic in applications of artificial intel-ligence and computer vision. Historically, object detection was widely used in var-ious fields like surveillance, fine-grained activities and robotics. All studies focus on improving accuracy for object detection using images, whether indoor or outdoor scenes. Therefore, this paper took a shot by improving the doable features extraction and proposing crossed sliding window approach using exiting classifiers for object de-tection. In this paper, the contribution includes two parts: First, improving local depth pattern feature along side SIFT and the second part explains a new technique presented by proposing crossed sliding window approach using two different types of images (colored and depth). Two types of features local depth patterns for detection (LDPD) and scale-invariant feature transform (SIFT) were merged as one feature vector. The RGB-D object dataset has been used and it consists of 300 different objects and in-cludes thousands of scenes. The proposed approach achieved high results comparing to other features or separated features that are used in this paper. All experiments and comparatives were applied on the same dataset for the same objective. Experimental results report a high accuracy in terms of detection rate, recall, precision and F1 scorein RGB-D scenes.


Binary SVM; LDBD; Object detection; RGB-D object dataset; SIFT; Sliding window

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v23.i2.pp1073-1083


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics