Efficient intelligent system for diagnosis pneumonia (SARS-COVID19) in X-Ray images empowered with initial clustering

Salam Saad Mohamed Ali, Ali Hakem Alsaeedi, Dhiah Al-Shammary, Hassan Hakem Alsaeedi, Hadeel Wajeeh Abid

Abstract


This paper proposes efficient models to help diagnose respiratory (SARS-COVID19) infections by developing new data descriptors for standard machine learning algorithms using X-Ray images. As COVID-19 is a significantly serious respiratory infection that might lead to losing life, artificial intelligence plays a main role through machine learning algorithms in developing new potential data classification. Data clustering by K-Means is applied in the proposed system advanced to the training process to cluster input records into two clusters with high harmony. Principle Component Analysis PCA, histogram of orientated gradients (HOG) and hybrid PCA and HOG are developed as potential data descriptors. The wrapper model is proposed for detecting the optimal features and applied on both clusters individually. This paper proposes new preprocessed X-Ray images for dataset featurization by PCA and HOG to effectively extract X-Ray image features. The proposed systems have potentially empowered machine learning algorithms to diagnose Pneumonia (SARS-COVID19) with accuracy up to %97.

Keywords


COVID-19; Features extraction; Features selection; Machine learning; Metaheuristic optimization

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v22.i1.pp241-251

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics