Framework of diacritic segmentation for Arabic handwritten document

Ahmed Abdalla Shiekh, Mohd Sanusi Azmi, Maslita Abd Aziz, Mohammed Nasser Al-Mhiqani, Salem Saleh Bafjaish


InĀ recent Arabic standard language and Arabic dialectal texts, diacritics and short vowels are absent. There are some exceptions have been made for the Arabic beginner learner scripts, religious texts and as well as a significant political text. In addition, the text without diacritics is considered ambiguous due to numerous words with different diacritic marks seem identical. However, this paper we present a framework for segmenting diacritics from Arabic handwritten document by using region-based segmentation technique. Since Arabic handwritten and Mushaf Al-Quran contain many diacritical marks. Hence, the diacritics must be properly extracted from Arabic handwritten document to avoid losing some good features. Furthermore, the proposed framework is devised specifically to segment diacritics from Arabic handwritten image, thus there will be no feature extraction, feature selection, and classification processes included. Besides, we will present the methodology that is used to fulfil the objectives of this paper. The pre-processing phases will be explained and more specifically segmentation phase for segmenting diacritics which is the phase we concentrate more in this article. Lastly, we will identify the proposed technique region-based segmentation to facilitate our development throughout the experimental process.


Arabic handwritten segmentation; Diacritics segmentation; Image segmentation phase; Pre-processing phase; Region-based;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics