Enhancement of cloud performance metrics using dynamic degree memory balanced allocation algorithm

Aparna Shashikant Joshi, Shayamala Devi Munisamy

Abstract


In cloud computing, load balancing among the resources is required to schedule a task, which is a key challenge. This paper proposes a dynamic degree memory balanced allocation (D2MBA) algorithm which allocate virtual machine (VM) to a best suitable host, based on availability of random-access memory (RAM) and microprocessor without interlocked pipelined stages (MIPS) of host and allocate task to a best suitable VM by considering balanced condition of VM. The proposed D2MBA algorithm has been simulated using a simulation tool CloudSim by varying number of tasks and keeping number of VMs constant and vice versa. The D2MBA algorithm is compared with the other load balancing algorithms viz. Round Robin (RR) and dynamic degree balance with central processing unit (CPU) based (D2B_CPU based) with respect to performance parameters such as execution cost, degree of imbalance and makespan time. It is found that the D2MBA algorithm has a large reduction in the performance parameters such as execution cost, degree of imbalance and makespan time as compared with RR and D2B CPU based algorithms

Keywords


cloud computing; CloudSim; degree of imbalance; load balancing; task scheduling;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v22.i3.pp1697-1707

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics