Improved grey wolf algorithm for optimization problems

Hafiz Maaz Asgher, Yana Mazwin Mohmad Hassim, Rozaida Ghazali, Muhammad Aamir


The grey wolf optimization (GWO) is a nature inspired and meta-heuristic algorithm, it has successfully solved many optimization problems and give better solution as compare to other algorithms. However, due to its poor exploration capability, it has imbalance relation between exploration and exploitation. Therefore, in this research work, the poor exploration part of GWO was improved through hybrid with whale optimization algorithm (WOA) exploration. The proposed grey wolf whale optimization algorithm (GWWOA) was evaluated on five unimodal and five multimodal benchmark functions. The results shows that GWWOA offered better exploration ability and able to solve the optimization problem and give better solution in search space. Additionally, GWWOA results were well balanced and gave the most optimal in search space as compare to the standard GWO and WOA algorithms.


exploitation; exploration; grey wolf optimization; optimization; whale optimization algorithm;

Full Text:





Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics