Reliability-based routing metric for UAVs networks

Musaab Mohammed Jasim, Hayder Khaleel AL-Qaysi, Yousif Allbadi


As a result of technological advances in robotic systems, electronic sensors, and communication techniques, the production of unmanned aerial vehicle (UAV) systems has become possible. Their easy installation and flexibility led these UAV systems to be used widely in both military and civilian applications. Note that the capability of one UAV is however limited. Nowadays, a multi-UAV system is of special interest due to the ability of its associate UAV members either to coordinate simultaneous coverage of large areas or to cooperate to achieve common goals/targets. This kind of cooperation/coordination requires a reliable communication network with a proper network model to ensure the exchange of both control and data packets among UAVs. Such network models should provide all-time connectivity to avoid dangerous failures or unintended consequences. Thus, the multi-UAV system relies on communication to operate. Flying ad hoc network (FANET) is moreover considered as a sophisticated type of wireless ad hoc network among UAVs which solved the communication problems into other network models. Along with the FANET’s unique features, challenges and open issues are also discussed especially in the routing protocols approach. We will try to present the expected transmission account metric with a new algorithm for reliability. In addition to this new algorithm mechanism, the metric takes into account the relative speed between UAVs, and thus the increase of the fluctuations in links between UAVs has been detected. Accordingly, the results show that the function of the AODV routing protocol with this metric becomes effective in high mobility environments.


Routing metrics; UAVs networks; Ad-hoc networks; FANETs; Routing algorithm

Full Text:




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics