Data mining in web personalization using the blended deep learning model

Qusay Abdullah Abed, Osamah Mohammed Fadhil, Wathiq Laftah Al-Yaseen

Abstract


In general, multidimensional data (mobile application for example) contain a large number of unnecessary information. Web app users find it difficult to get the information needed quickly and effectively due to the sheer volume of data (big data produced per second). In this paper, we tend to study the data mining in web personalization using blended deep learning model. So, one of the effective solutions to this problem is web personalization. As well as, explore how this model helps to analyze and estimate the huge amounts of operations. Providing personalized recommendations to improve reliability depends on the web application using useful information in the web application. The results of this research are important for the training and testing of large data sets for a map of deep mixed learning based on the model of back-spread neural network. The HADOOP framework is using to perform a number of experiments in a different environment with a learning rate between -1 and +1. Also, using the number of techniques to evaluate the number of parameters, true positive cases are represent and fall into positive cases in this example to evaluate the proposed model

Keywords


Data mining; Deep learning model; Map reduce; Support vector machine; Web personalization

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v20.i3.pp1507-1512

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics