A survey on local binary pattern and gabor filter as texture descriptors of smart profiling systems

Shihab Hamad Khaleefah, Salama A. Mostafa, Aida Mustapha, Noor Azah Samsudin, Mohammad Faidzul Nasrudin, Abdullah Baz


With the dramatic expansion of image information nowadays, image processing and computer visions are playing a significant role in terms of several applications such as image classification, image segmentation, pattern recognition, and image retrieval. One of the important features that have been used in many image applications is texture. The texture is the characteristic of a set of pixels that formed the image. Therefore, analyzing such texture would have a significant impact on segmenting the image or detecting important portions of such image. This paper aims to overview the feature extraction and description techniques depicted in the literature to characterize regions for images. In particular, two of popular descriptors will be examined including local binary pattern (LBP) and gabor filter. The key characteristic behind such investigation lies in how the features of an image would contribute toward the process of recognition and image classification. In this regard, an extensive discussion is provided on both LBP and Gabor descriptors along with the efforts that have been intended to combine them. The reason behind investigating these descriptors is that they are considered the most common local and global descriptors used in the literature. The overall aim of this survey is to show current trends on using, modifying and adapting these descriptors in the domain of image processing.


Feature extraction; Gabor filter; Image processing; Local binary pattern; Texture descriptors

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v20.i3.pp1379-1387


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics