Performance comparison of field oriented control based permanent magnet synchronous motor fed by matrix converter using PI and IP speed controllers

Mohamed Bouazdia, Mohamed Bouhamida, Rachid Taleb, Mouloud Denai


This paper focuses on modeling and closed-loop speed control of a three-phase Permanent Magnet Synchronous Motor (PMSM) fed by a Matrix Converter (MC) based on Field-Oriented Control (FOC). The model considers a set of a small input filter with supply impedance or cable effect, to improve the quality of the input current. A simplified form of the Venturini modulation algorithm is used for switching the matrix converter and a comparative study of two types of speed controllers is presented, namely a proportional integral (PI) and a proportional integral (PI) to improve performances of the drive system in transient and stable conditions. The overall drive system is simulated using Matlab/Simulink environment. The motor performance is evaluated under different operating conditions such as sudden changes in the load or changes in the angular speed reference. The results of the converter MC gives unlimited output frequency, sinusoidal input current and output voltage waveforms and unity input displacement factor. The IP controller is shown to achieve better performance of the speed control loop, with or without the load torque as compared to the PI classic controller.


Matrix converte;r Permanent magnet synchronous machine; PI and IP controller; Field oriented control

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics