An overview of traffic congestion detection and classification techniques in VANET
Abstract
Vehicular traffic congestion has been and still is a major problem for many countries and knowledge about the traffic condition is important in order to schedule, plan and avoid traffic congestion. With recent development in technology, various efforts and methods are proposed in mitigating traffic congestion. Vehicular Ad-hoc NETwork (VANET) is very much in the hype in addressing this issue due to its capabilities and adaptation to scalability, highly dynamic topology as well as cooperative communication. A popular focus is in detecting and classisying traffic congestion which presents various techniques and methodologies. This paper presents an overview of traffic congestion detection and classification methods of various related techniques in VANET, organized from the research perspective. Qualitative analysis is presented to classify these strategies in its system architecture, detection and classification methods, as well as its simulated mobility environment and simulation tools used. The analysis is useful in understanding all the techniques and methods applied in resolving this issue in the research domain.
Keywords
Qualitative analysis; Simulated mobility environment; Traffic congestion classification; Traffic congestion detection; Vehicular ad-hoc network
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v20.i1.pp437-444
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).