Intelligent based technique for under voltage load shedding in power transmission systems

Saiful Firdaus Abd Shukor, Ismail Musirin, Zulkifli Abd Hamid, Mohamad Khairuzzaman Mohamad Zamani, Mohamed Zellagui, Hadi Suyono


The increasing demand of electric power energy and the presence of disturbances can be identified as the factors of voltage instability condition in a power system. A secure and reliable power system should be considered to ensure smooth delivery of electricity to the consumers. A power system may experience undesired event such as voltage instability condition leading to voltage collapse or cascading collapse if the system experiences lack of reactive power support. Thus, to avoid blackout and cascaded tripping, load shedding is the last resort to prevent a total damage. Under Voltage Load Shedding (UVLS) scheme is one of the possible methods which can be conducted by thepower system operators to avoid the occurrence of voltage instability condition. This paper presents the intelligent based technique for under voltage load shedding in power transmission systems. In this study, a computational based technique is developed in solving problem related to UVLS. The integration between a known computational intelligence-based technique termed as Evolutionary Programming (EP) with the under-voltage load shedding algorithm has been able to maintain the system operated within the acceptable voltage limit. Loss and minimum voltage control as the objective function implemented on the IEEE 30-Bus Reliability Test System (RTS) managed to optimally identify the optimal location and sizing for the load shedding scheme. Results from the studies, clearly indicate the feasibility of EP for load shedding scheme in loss and minimum voltage control in power system.


Under voltage load shedding (UVLS), Evolutionary programming (EP), Objective function (OF), Fourth keyword, Fifth keyword

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics