An immune memory and negative selection to visualizing clinical pathways from electronic health record data
Abstract
Clinical pathways indicate the applicable treatment order of interventions. In this paper we propose a data-driven methodology to extract common clinical pathways from patient-centric Electronic Health Record data (EHR). The analysis of patient's, can lead to better regarding pathologies. The proposed algorithmic methodology consist to designing a system of control and analysis of patient records based on an analogy between the elements of the new EHRs and the biological immune systems. The detection of patient profiles ensured by biclustering Matrix. We rely on biological immunity to develop a set of models for structuring knowledge extracted from EHR and to make pathway analysis decisions. A specific analysis of the functional data leds to the detection of several types of patients who share the same EHR information. This methodology demonstrates its ability to simultaneously processing data, and is able to providing information for understanding and identifying the path of patients as well as predicting the path of future patients.
Keywords
EHR; Hospital environment; AIS; Negative selection; Immune memory
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v19.i1.pp336-343
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).