Automated brain tumor segmentation and classification for MRI analysis system

Norhashimah Mohd Saad, Muhamad Faizal Yaakub, Abdul Rahim Abdullah, Nor Shahirah Mohd Noor, Nur Azmina Zainal, Wira Hidayat Mohd Saad


This paper proposed a new analysis technique of brain tumor segmentation and classification for Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI). 25 FLAIR MRI images were collected from online database of Multimodal Brain Tumor Segmentation Challenge 2015 (BRaTS’15).  The analysis comprised four stages which are preprocessing, segmentation, feature extraction and classification. Fuzzy C-Means (FCM) was proposed for brain tumor segmentation. Mean, median, mode, standard deviation, area and perimeter were calculated and utilized as the features to be fed into a rule-based classifier. The segmentation performances were assessed based on Jaccard, Dice, False Positive and False Negative Rates (FPR and FNR). The results indicate that FCM offered high similarity indices which were 0.74 and 0.83 for Jaccard and Dice indices, respectively. The technique can possibly provide high accuracy and has the potential to detect and classify brain tumor from FLAIR MRI database.


Tumor, MRI, Fuzzy C-Means, Segmentation, Classification

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics