Total Variation based Multivariate Shearlet Shrinkage for Image Reconstruction

Chengzhi Deng, Saifeng Hu, Wei Tian, Min Hu, Yan Li, Shengqian Wang

Abstract


Shearlet as a new multidirectional and multiscale transform is optimally efficient in representing images containing edges. In this paper, a total variation based multivariate shearlet adaptive shrinkage is proposed for discontinuity-preserving image denoising. The multivariate adaptive threshold is employed to reduce the noise. Projected total variation diffusion is used to suppress the pseudo-Gibbs and shearlet-like artifacts. Numerical experiments from piecewise-smooth to textured images demonstrate that the proposed method can effectively suppress noise and nonsmooth artifacts caused by shearlet transform. Furthermore, it outperforms several existing techniques in terms of structural similarity (SSIM) index, peak signal-to-noise ratio (PSNR) and visual quality.

 

DOI: http://dx.doi.org/10.11591/telkomnika.v11i1.1868


Full Text:

PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics