A multimodal biometric identification system based on cascade advanced of fingerprint, fingervein and face images
Abstract
In this paper, we present a multimodal biometric recognition system that combines fingerprint, fingervein and face images based on cascade advanced and decision level fusion. First, in fingerprint recognition system, the images are enhanced using gabor filter, binarized and passed to thinning method. Then, the minutiae points are extracted to identify that an individual is genuine or impostor. In fingervein recognition system, image processing is required using Linear Regression Line, Canny and local histogram equalization technique to improve better the quality of images. Next, the features are obtained using Histogram of Oriented Gradient (HOG). Moreover, the Convolutional Neural Networks (CNN) and the Local Binary Pattern (LBP) are applied to detect and extract the features of the face images, respectively. In addition, we proposed three different modes in our work. At the first, the person is identified when the recognition system of one single biometric modality is matched. At the second, the fusion is achieved at cascade decision level method based on AND rule when the recognition system of both biometric traits is validated. At the last mode, the fusion is accomplished at decision level method based on AND rule using three types of biometric. The simulation results have demonstrated that the proposed fusion algorithm increases the accuracy to 99,43% than the other system based on unimodal or bimodal characteristics.
Keywords
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v17.i3.pp1562-1570
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).