Image classification of malaria using hybrid algorithms: convolutional neural network and method to find appropriate K for K-nearest neighbor
Wisit Lumchanow, Sakol Udomsiri
Abstract
This paper presents image classification algorithms to improve the learning rate and to comparison the classification efficiency. Using convolutional neural network (CNN) for feature extraction and method to find appropriate k for k-nearest neighbor (KNN). Medical datasets were used in the experiments to classify Plasmodium Vivax and Plasmodium Falciparum. Results of the study indicated that for Plasmodium Vivax in ring form, the appropriate k was 1 and the learning rate (LR) was 83.33%, Trophozoite (k=5, LR=91.67%), Schizont (k=1, LR=83.33%), and Gametocyte (k=1, LR=91.67%) whereas Plasmodium Falciparum in ring form (k=7, LR=91.67%), Trophozoite (k=1, LR=83.33%), Schizont (k=1, LR=91.67%) and Gametocyte (k=1, LR=100%).
Keywords
Image classification; Malaria; AlexNet; CNN; KNN;
DOI:
http://doi.org/10.11591/ijeecs.v16.i1.pp382-388
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).
IJEECS visitor statistics