Combining Fuzzy Logic and Dempster-Shafer Theory
Abstract
This research aims to combine the mathematical theory of evidence with the rule based logics to refine the predictable output. Integrating Fuzzy Logic and Dempster-Shafer theory by calculating the similarity between Fuzzy membership function. The novelty aspect of this work is that basic probability assignment is proposed based on the similarity measure between membership function. The similarity between Fuzzy membership function is calculated to get a basic probability assignment. The Dempster-Shafer mathematical theory of evidence has attracted considerable attention as a promising method of dealing with some of the basic problems arising in combination of evidence and data fusion. Dempster-Shafer theory provides the ability to deal with ignorance and missing information. The foundation of Fuzzy logic is natural language which can help to make full use of expert information.
Keywords
Fuzzy Logic, Dempster-Shafer theory, membership function, basic probability assignment
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v16.i3.pp583-590
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).