Integration of synthetic minority oversampling technique for imbalanced class

Noviyanti Santoso, Wahyu Wibowo, Hilda Hikmawati

Abstract


In the data mining, a class imbalance is a problematic issue to look for the solutions. It probably because machine learning is constructed by using algorithms with assuming the number of instances in each balanced class, so when using a class imbalance, it is possible that the prediction results are not appropriate. They are solutions offered to solve class imbalance issues, including oversampling, undersampling, and synthetic minority oversampling technique (SMOTE). Both oversampling and undersampling have its disadvantages, so SMOTE is an alternative to overcome it. By integrating SMOTE in the data mining classification method such as Naive Bayes, Support Vector Machine (SVM), and Random Forest (RF) is expected to improve the performance of accuracy. In this research, it was found that the data of SMOTE gave better accuracy than the original data. In addition to the three classification methods used, RF gives the highest average AUC, F-measure, and G-means score.

Keywords


imbalanced class, smote, data mining, accuracy

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v13.i1.pp102-108

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics