Modeling Baseline Energy Using Artificial Neural Network – A Small Dataset Approach
Abstract
In this work, baseline energy model development using Artificial Neural Network (ANN) with resampling techniques; Cross Validation (CV) and Bootstrap (BS) are presented. Resampling techniques are used to examine the ability of the ANN model to deal with a small dataset. Working days, class days and Cooling Degree Days (CDD) are used as ANN input meanwhile the ANN output is monthly electricity consumption. The coefficient of correlation (R) is used as performance function to evaluate the model accuracy. For this analysis, R is calculated for the entire data set (R_all) and separately for training set (R_train), validation set (R_valid) dan testing set (R_test). The closer R to 1, the higher similarities between targeted and predicted output. The total of two different models with several number of neurons are developed and compared. It can be concluded that all models are capable to train the network. Artificial Neural Network with Bootstrap Cross Validation technique (ANN-BSCV) outperforms Artificial Neural Network with Cross Validation technique (ANN-CV). The 3-6-1 ANN-BSCV, with R_train = 0.95668, R_valid = 0.97553, R_test = 0.85726 and R_all = 0.94079 is selected as the baseline energy model to predict energy consumption for Option C IPMVP.
Keywords
Baseline Energy Model, Artificial Neural Network, Cross Validation, Bootstrap, Small dataset
Full Text:
PDFDOI: http://doi.org/10.11591/ijeecs.v12.i2.pp662-669
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).