Neighbor Weighted K-Nearest Neighbor for Sambat Online Classification

Annisya Aprilia Prasanti, M. Ali Fauzi, Muhammad Tanzil Furqon

Abstract


Sambat Online is one of the implementation of E-Government for complaints management provided by Malang City Government.  All of the complaints will be classified into its intended department. In this study, automatic complaint classification system using Neighbor Weighted K-Nearest Neighbor (NW-KNN) is poposed because Sambat Online has imbalanced data. The system developed consists of three main stages including preprocessing, N-Gram feature extraction, and classification using NW-KNN. Based on the experiment results, it can be concluded that the NW-KNN algorithm is able to classify the imbalanced data well with the most optimal k-neighbor value is 3 and unigram as the best features by 77.85% precision, 74.18% recall, and 75.25% f-measure value. Compared to the conventional KNN, NW-KNN algorithm also proved to be better for imbalanced data problems with very slightly differences.


Keywords


Text Classification, Sambat Online, N-Gram, NW-KNN, Neighbor Weighted K-Nearest Neighbor; K-Nearest Neighbor

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v12.i1.pp155-160

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics