The trend malware source of IoT network

Susanto Susanto, M. Agus Syamsul Arifin, Deris Stiawan, Mohd. Yazid Idris, Rahmat Budiarto

Abstract


Malware may disrupt the Internet of Thing (IoT) system/network when it resides in the network, or even harm the network operation. Therefore, malware detection in the IoT system/network becomes an important issue. Research works related to the development of IoT malware detection have been carried out with various methods and algorithms to increase detection accuracy. The majority of papers on malware literature studies discuss mobile networks, and very few consider malware on IoT networks. This paper attempts to identify problems and issues in IoT malware detection presents an analysis of each step in the malware detection as well as provides alternative taxonomy of literature related to IoT malware detection. The focuses of the discussions include malware repository dataset, feature extraction methods, the detection method itself, and the output of each conducted research. Furthermore, a comparison of malware classification approaches accuracy used by researchers in detecting malware in IoT is presented.

Keywords


Data repository malware; Feature extraction; IoT; Malware; Malware detection



DOI: http://doi.org/10.11591/ijeecs.v22.i1.pp%25p
Total views : 35 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics