A New Hybrid Conjugate Gradient Algorithm for Optimization Models and Its Application to Regression Analysis

Sulaiman Mohammed Ibrahim

Abstract


The hybrid conjugate gradient (CG) method is among the efficient variants of CG method for solving optimization problems. This is due to their low memory requirements and nice convergence properties. In this paper, we present an efficient hybrid CG method for solving unconstrained optimization models and show that the method satisfies the sufficient descent condition.  The global convergence prove of the proposed method would be established under inexact line search. Application of the proposed method to the famous statistical regression model describing the global outbreak of the novel COVID-19 is presented. The study parameterized the model using the weekly change confirmed cases from December 30, 2019 to March 30, 2020. Preliminary numerical results on some unconstrained optimization problems show that the proposed method is efficient and promising. Furthermore, the proposed method produced a good regression equation for COVID-19 confirmed cases globally.

Keywords


Conjugate gradient method, Regression Analysis, line search procedures, Convergence analysis.

References


I.M. Sulaiman, Sukono, S. Supian, M. Mamat New class of hybrid conjugate gradient coefficients with guaranteed descent and efficient line search. IOP Conf. Ser.: Mater. Sci. Eng. 621(012021), 2019.

I.M. Sulaiman and M. Mamat. A New Conjugate Gradient Method with Descent Properties and its Application to Regression analysis. Journal of Numerical Analysis, Industrial and Applied Mathematics vol.12(1-2): pp. 25-39, 2020.

Y. Yuan. Numerical methods for nonlinear programming. China: Shanghai Scientific & Technical Publishers; 1993.

M.R. Hestenes, E.L. Stiefel. Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, vol. 49, pp. 409–436, 1952.

R. Fletcher, C. Reeves. Function minimization by conjugate gradients, Comput. J. vol.7, pp. 149–154, 1962.

E. Polak, G. Ribiere. Note sur la convergence de directions conjug´ees, Rev. Francaise Informat Recherche Opertionelle, 3e ann´ee, vol.16, pp. 35–43, 1969.

B.T. Polyak. The conjugate gradient method in extremal problems, USSR Comp. Math. Math. Phys., vol..9, pp. 94–112, 1969.

Y.H. Dai, Y. Yuan Y. A nonlinear conjugate gradient with strong global convergence properties, SIAM, 10, pp. 177-182, 2000.

M. Al-Baali. Descent property and global convergence of the Fletcher-Reeves method with inexact line search, IMA J. Numerical Analysis., vol.5, pp. 121–124, 1985.

I.M. Sulaiman, M. Mamat, A. Abashar, M. Rivaie. The global convergence properties of an improved conjugate gradient method Applied Mathematical Science, vol 9(38), pp. 1857-1868, 2015.

M.J.D. Powell. Nonconvex minimization calculations and the conjugate gradient method. Lecture Notes in Mathematics, vol. 1066 (Berlin: Springer-Verlag), 122–141, 1984.

M.J.D. Powell, M.J. Restart procedures for the conjugate gradient method. Mathematical Programming, vol.33, 241–254, 1985.

T. Alkhouli, I.M. Sulaiman, M. Rivaie, M. Mamat. An Efficient Hybrid Conjugate Gradient Coefficient under Inexact Line Search. International Journal of Advanced Trends in Computer Science and Engineering, vol.9(1), pp. 784-788, 2020.

A.H. Ibrahim, P. Kumam, A.B. Abubakara, W. Jirakitpuwapat, J. Abubakar. A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing. Heliyon, vol.6, 2020.

Aini, N. Rivaie, M. Mamat, M. and Sulaiman, I. M. A Hybrid of Quasi-Newton Method with CG Method for Unconstrained Optimization. J. Phys.: Conf. Ser. 1366(012079), 1-10, 2019.

M.Y. Waziri, K. Ahmed, J. Sabi'u, A family of Hager–Zhang conjugate gradient methods for system of monotone nonlinear equations. Applied Mathematics and Computation, vol.361, pp. 645-660, 2019.

K. Kamfa, M.Y. Waziri, I.M. Sulaiman, M.H. Ibrahim, M. Mamat, S.S. Abbas An Efficient Hybrid BFGS-CG Search Direction for Solving Unconstrained Optimization Problems. Journal of Advanced Research in Dynamical and Control Systems 12(2):1035-1041, 2020.

M. Rivaie, M. Mamat, L.W. June, I. Mohd. A new class of nonlinear conjugate gradient coefficients with global convergence properties. Applied Mathematics and Computation, vol. 218(22), 11323-11332, 2012.

D. Touati-Ahmed, C. Storey. Efficient hybrid conjugate gradient techniques, Journal of optimization theory and applications, vol. 64, pp. 379-397, 1990.

Y. H. Dai, Y. Yuan, An efficient hybrid conjugate gradient method for unconstrained optimization, Annals of Operations Research, vol.103, pp. 33-47, 2001.

M. Jiangtao, G. Nengzhu, W. Zengxin. Hybrid conjugate gradient methods for unconstrained optimization. Optimization method and Software. vol.22(2), pp.297-307, 2007.

G. Zoutendijk. Nonlinear programming, computational methods, in Integer and Nonlinear Programming, J. Abadie, ed., North-Holland, Amsterdam, pp. 37–8, 1970.

P. Wolfe, Convergence conditions for ascent methods, SIAM Review, vol.11, pp. 226-235, 1969.

P. Wolfe, Convergence conditions for ascent methods, II: Some corrections SIAM Review, vol. 13, 185-188, 1971.

N. Andrei, An unconstrained optimization test functions collection," Advanced Modeling and Optimization, vol. 10, pp. 147-161, 2008.

Y. Yuan, J. Stoer. A subspace study on conjugate algorithms. ZAMM Z Angew Math Mech. vol.75(11):69–77, 1995.

E. D. Dolan and J. J. More, "Benchmarking optimization software with performance profiles," Mathematical Programming, vol. 91, pp. 201-213, 2002.

M. Malik, M. Mamat, S.S. Abas, I.M. Sulaiman, F. Sukono. A New Coefficient of the Conjugate Gradient Method with the Sufficient Descent Condition and Global Convergence Properties. Engineering Letters vol. 28(3):1-11, 2020.

S. Alsuliman, I.M. Sulaiman, M. Mamat, D. Salaki, N. Nainggolan. A New Hestenes-Stiefel and Fletcher-Reeves Conjugate Gradient Method with Descent Properties for Optimization Models. International Journal of Supply and Operations Management, vol 7(4), 344-349, 2020 doi: 10.22034/IJSOM.2020.4.4.

I.M. Sulaiman and M. Mamat., A. E. Owoyemi, P. L. Ghazali, M. Rivaie, M. Malik. The convergence properties of some descent conjugate gradient algorithms for optimization models. J. Math. Computer Sci. vol. 22, 204-215, 2020. DOI:10.22436/jmcs.022.03.02.

World health organization. (2020, November 09). Report on coronavirus (Covid-19). Retrieved from https://covid19.who.int/.




DOI: http://doi.org/10.11591/ijeecs.v22.i3.pp%25p

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics