Design of travel angle control of quanser bench-top helicopter using mamdani-based fuzzy logic controller

Hasmah Mansor, Mohamad K. Azmi Mat Esa, Teddy Surya Gunawan, Zuriati Janin


This research focuses on travel angle control of a laboratory scale bench-top helicopter developed by Quanser Inc.  Bench top-helicopter is usually used by engineers and researchers to test their designed controllers before applying to the actual helicopter. Bench-top helicopter has the same behavior as the real helicopter, with 3 degree of freedom.  The bench-top helicopter is mounted on a flat surface with two rotors that depends on the voltage supplied to change the direction of the helicopter in 3 different angles. The movement of the helicopter is based on the direction of three-different angles; travel, pitch and yaw angles. The existing Linear Quadratic Regulator-Integral controller used by Quanser Inc has some limitations in terms of tracking capability and settling time; therefore this research is proposed. The objective of this research is to develop Mamdani-based Fuzzy Logic Controller for travel angle control of bench-top helicopter. Performance comparison has been done with the existing Linear Quadratic Regulator-Integral controller in both simulation and hardware. From the test results, it was found that the performance of Fuzzy Logic Controller is better than LQR-I controller especially for closed-loop simulation at desired angle of 30°. The percentage of overshoot of the Fuzzy Logic Controller has been improved from the existing controller which is 4.912% compared to 7.002% for LQR-I.


Bench-top helicopter, Linear quadratic integral controller, Mamdani-based fuzzy logic controller, Travel angle control

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics