Design and simulate a doherty power amplifier using GaAs technology for telecommunication applications

Ehsan Barmala


In this paper, a Doherty power amplifier was designed and simulated at 2.4 GHz central frequency which has high efficiency. A Doherty power amplifier is a way to increase the efficiency in the power amplifiers. OMMIC ED02AH technology and PHEMT transistors, which is made of gallium arsenide, have been used in this simulation. The Doherty power amplifier unique feature is its simple structure which is consisting of two parallel power amplifiers and transmission lines. In order to integrate the circuit, the Doherty power transmission amplifier lines were implemented using an inductor and capacitive components. Also, the Wilkinson power divider is used on the chip input. To improve the efficiency, the auxiliary amplifier dimensions is selected enlarge and the further input power is allocated it by the power divider. A parallel R-C circuit has been used at the input of transistors to improve their stability. Simulation results show that the Doherty power amplifier has 17.2 dB output power gain, 23 dBm maximum output power, and its output power P1dB =22.6dBm at compression point -1 dB, also, its maximum efficiency is 55.5%.


Doherty Power Amplifier, Gallium Arsenide, Power Divider

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics