A novel machine learning based hybrid approach for breast cancer relapse prediction

Ghanashyam Sahoo¹, Ajit Kumar Nayak², Pradyumna Kumar Tripathy³, Jyotsnarani Tripathy⁴
¹Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
²Department of Computer Science and Information Technology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, India
³Department of Computer Science and Engineering, Silicon Institute of Technology, Bhubaneswar, India
⁴Department of CSE-AI ML and IoT, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India

ABSTRACT

The second leading cause of death for women is breast cancer, which is growing. Some cancer cells may remain in the body, so relapse is possible even if treatment begins soon after diagnosis. Since there are now many machine learning (ML) approaches to recurrence prediction in breast cancer, it is important to compare and contrast them to find the most effective one. Datasets with many features often lead to incorrect predictions because of this. In this study, correlation-based feature selection (CFS) and the flower pollination algorithm (FPA) are used to improve the quality of the wisconsin prognostic breast cancer (WPBC) and University Medical Centre, Institute of Oncology (UMCIO) breast cancer relapse datasets respectively. Data imputation, scaling, pre-process raw data. The second stage uses CFS to select discriminative features based on important feature correlations. The FPA chose the optimum attribute combination for the most precise answer. We tested the approach using 10-fold cross-validation stratification. Various trials show 84.85% and 83.92% accuracy on the WPBC and UMCIO breast cancer relapse datasets, respectively. The hybrid method performed well in feature selection, increasing the accuracy of the relapse classification for breast cancer.

Keywords:
Breast cancer relapse
Classification approaches
Correlation-based feature selection
Flower pollination algorithm
Machine learning

1. INTRODUCTION

The World Health Organization (WHO) reports that breast cancer is a major cause of death worldwide. This disorder is more common in older women of all races [1]. And it is the leading killer of female cancer patients. The most lethal aspects of breast cancer are metastasis and recurrence. Breast cancer that has been treated may come back years or decades later. Early detection and prediction are seen as helpful tools in the battle against this aggressive cancer by many researchers [2]. The use of machine learning (ML) and data mining (DM) for relapse prediction in breast cancer is thus an important area of research. In order to glean meaningful insights from large data sets, data miners employ statistical, probabilistic, and ML techniques [3], [4]. The ability to accurately forecast breast cancer helps doctors tailor treatments to the needs of each patient, improving care and survival rates. The utilization of healthcare resources for these individuals is also enhanced. Why breast cancer recurs so rapidly is still a mystery to clinical and statistical researchers [4]. Researchers are urged to use ML’s learning and forecasting powers to diagnose and treat several diseases. ML methods employ
mathematical models that link features to find patterns in large datasets. The use of ML algorithms in medical studies has grown in recent years. Several ML methods have been designed specifically for breast cancer classification in medical datasets [5].

Prediction models were developed by Ahmad et al. [6] using decision tree (DT) C4.5, support vector machine (SVM), and artificial neural network (ANN). In order to determine how sensitive, specific, and accurate these three popular algorithms are, we conduct these evaluations. To enhance recurrence prediction in breast cancer, Vazifehdan et al. [7] created a hybrid imputation approach that takes into account attribute reliance and incomplete attribute type. Using the Wisconsin prognostic breast cancer dataset (WPBC), Chakradeo et al. [8] compared several ML models for detecting and predicting breast cancer recurrences. To evaluate susceptibility, risk, recurrence, and regeneration after resolution and survival, Aavula and Bhraramamba developed the extensible breast cancer prognosis framework (XBPF) [9]. The authors propose combining representative feature subset selection (RFSS) with SVMs to better forecast surveillance, epidemiology, and end results (SEER) dataset outcomes. Prediction strategies for recurrence of breast cancer within ten years of surgery were investigated by Lou et al. [10]. Using data from pathology reports and patient progress notes, Wang et al. [11] constructed an electronic health record-based distant recurrence prediction model for 6,447 breast cancer patients who were treated at Northwestern Memorial Hospital between 2001 and 2015. Breast cancer recurrence prediction motivated Momennzadeh et al. [12] development of a hidden markov model (HMM). The HMM produced sequential patterns from gene expression data to distinguish expression profiles, using ranked gene sets as observation sequences and hidden states as gene set priorities. Scaling only, scaling with principle component analysis (PCA), scaling with PCA and minority class oversampling, and scaling with selected characteristics were the four prominent ML models that Magboo and Magboo [13] tested for categorizing breast cancer recurrences on the WPBC dataset. Using ML techniques, Alzu’bi et al. [14] predicted the return of breast cancer. The medical staff at King Abdullah University Hospital (KAUH) agreed with the prognosis. Doctors and researchers validated the content of the medical dictionary. Alwohaibi et al. [15] used statistics and a brainstorming optimization algorithm (BSO) to refine their study of two breast cancer recurrence datasets. As the first step in the multi-phase process, statistical feature selection (SFM) is where we start. Using importance and correlation, SFM chooses discriminative features. Predictions based on class variables are used to rank traits. Second, the approach is analyzed by a multi-classifier (MC) using a combination of two SFMs and three classifiers. The BSO algorithm prioritized the most important factors. Ebrahim et al. [16] analyzed 1.7 million NIH datasets. They employed DT, linear discriminant analysis (LDA), logistic regression (LR), SVM, and ensemble techniques (ET). The features impacted precision as well as probabilistic neural network (PNN), deep neural network (DNN), and recurrent neural network (RNN) methods were employed for comparison study.

Dataset feature quality influences classification algorithms’ instance classification. Noise hinders classification, although some data factors aid. These are why feature selection approaches exist. Good classification models can be computed cheaper with fewer features. Reducing unnecessary details makes healthcare diagnostic testing cheaper. Few recurrent breast cancer databases exist. Medical datasets often have missing data, duplicates, missing values, noise, and biases from non-representative events. Pretreatment enhances data classification and analysis. Specific missing data approaches. Second, these immense databases are heterogeneous. There are various ways to customize features. Wrapper strategies pick subsets of features using optimization algorithms, while discriminative methods select features. Finding the right dataset feature selection method might be tricky. Many high-dimensional breast cancer recurrence datasets have rich features. Third, dependency is uncertain. Determine the feature-target variable association by calculating the feature-class correlation coefficient. Predictable characteristics are highly connected to the class but not strongly associated with other features. Features improve prediction; hence, feature reliance is significant. Both independent and dependent factors predict. These challenges have no dataset-wide solution. The subset used can also affect classification. This study used a hybrid strategy to predict breast cancer relapse. The WPBC and University Medical Centre, Institute of Oncology (UMCIO) breast cancer datasets were obtained from the University of California Irvine machine learning (UCI-ML) Repository. Three phases make up this hybrid strategy: raw data is pre-processed via data imputation, scaling, and other methods. The correlation-based feature selection (CFS) uses important feature correlations to pick discriminative features. The flower pollination algorithm (FPA) found the best input properties for an exact answer. The feature selection methods and algorithms are employed for each dataset for optimal outcomes.

The rest of the paper is structured as follows: in section 2 depicts the data and methods used in the current research endeavors and the proposed work. The findings analysis is summed up in section 3. In section 4 concludes this study and suggests future research directions.
2. METHOD
2.1. Datasets description and pre-processing

This research investigates two breast cancer relapse datasets acquired from the UCI-ML Repository: the WPBC cancer relapse dataset and the UMCIO breast cancer relapse dataset. William, Wolberg, Nick Street, and Mangasarian from the University of Wisconsin developed the WPBC dataset [17]. The collection of data for the UMCIO dataset by the University Medical Center’s Institute of Oncology was done in Zwitter and Soklic [18]. In this data collection, each individual is an individual who underwent cancer surgery. A brief description of the datasets employed in this research is depicted in Table 1. The data in both datasets is unbalanced. To maintain the original distribution’s non-recurrence to recurrence ratio across folds, we employed stratified 10-fold cross-validation. Some datasets may benefit from preprocessing steps like data imputation and scaling. Eliminating missing values is simple when you use data imputation. Some missing values are usually not a big deal. Loss of statistical power and informative value results from discarding many cases. There must be imputation in the case of missing data. The missing numerical characteristics were reconstructed using a linear regression model. Sample median imputation was used for missing categories. Since the WPBC dataset was nearly complete except for four lymph node status variables, their associations with other factors were investigated. Missing feature values might be predicted using standard linear regression. However, the data range could be quite different for each attribute. To achieve this, we normalize or scale the feature data we have. Data preparation for ML relies on it. The absolute value of the WPBC feature data is divided by its standard deviation to achieve normalization.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Instances</th>
<th>Features</th>
<th>Non-relapse counts</th>
<th>Relapse counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPBC</td>
<td>198</td>
<td>35</td>
<td>151</td>
<td>47</td>
</tr>
<tr>
<td>UMCIO</td>
<td>286</td>
<td>10</td>
<td>201</td>
<td>85</td>
</tr>
</tbody>
</table>

2.2. Correlation-based feature selection

CFS is a feature selection algorithm to determine the correlation between two variables. To calculate the correlation, two different approaches are available [19]. One is to find out the linear coefficient, and the other is based on the information theory. In the first approach, the linear correlation coefficient (δ) can be calculated for the data point (f_i, f_j) as in the (1).

$$\delta = \frac{\Sigma (f_i-\bar{f}_i)(f_j-\bar{f}_j)}{\sqrt{\Sigma (f_i-\bar{f}_i)^2} \sqrt{\Sigma (f_j-\bar{f}_j)^2}}$$ \hspace{1cm} (1)

\bar{f}_i, \bar{f}_j are the mean of data point f_i and f_j respectively. δ value lies in between the -1 and 1. The value of δ shows the degree of correlation between them. If δ becomes 0, the features are considered fully independent [20].

2.3. Flower pollination algorithm

FPA is an optimization technique that makes use of flowers’ pollination behavior. Depending on the conditions, pollen may be transferred between flowers either biotically or abiotically [21]. The process of pollen being carried across large distances by animals and insects is called biotic pollination [22]. In abiotic pollination, pollen is dispersed over a short distance by the diffusion of water or air [23]. The four basic rules of FPA can be stated as follows:

- R1: biotic pollination is treated as global pollination following the levy flights.
- R2: abiotic pollination is called the local pollination process.
- R3: flower constancy feature of FPA assumes reproduction likelihood is correlated to flower resemblance.
- R4: local and global pollination switching can be controlled by a probability P in <0,1>.

The global pollination process of the FPA can be represented as (2) and (3) with G^* as the current global optimal solution and L as the levy flight step size with a constant scaling factor η.

$$x_{i+1} = x_i + \eta \cdot L \cdot (G^* - x_i)$$ \hspace{1cm} (2)

$$L = \frac{c \cdot y(c) \cdot \sin(\frac{\pi x_i}{c})}{\pi} \cdot \frac{1}{\gamma^c_v}$$ \hspace{1cm} (3)

where x_i denotes the current flower x_m at ith iteration with $y(\cdot)$ is the standard gamma function with a constant c. Similarly, the next position of a flower in the case of local search can be defined as (4).

A novel machine learning based hybrid approach for breast cancer relapse prediction (Ghanashyam Sahoo)
\[x_m^{i+1} = x_m^i + \omega (x_m^i - x_o^i) \] (4)

\(x_m^i \) and \(x_o^i \) are the positions of two different flowers used for pollination. \(\omega \) is the uniform distribution of \(<0, 1> \).

2.4. Proposed model

Several classification methods can be used to make predictions about the chance of relapse in breast cancer patients. Patients are separated into relapse and non-relapse groups using variables collected from their medical histories, genetic profiles, and clinical data through the use of ML and statistical methods. In addition to the CFS and FPA, several ML classification algorithms are applied to the dataset under consideration: SVM, random forest (RF), DT, LR, Naive Bayes (NB), K-nearest neighbours (KNN), and LDA [24]–[26]. The reported model uses two types of breast cancer relapse datasets. Figure 1 shows the workflow of the proposed model. Initially, the datasets undergo a preprocessing step to handle the outliers present in them. The CFS feature selection algorithm is then applied to the processed dataset to identify the correlated features. The FPA optimization algorithm is then applied to the featured dataset to bring the optimized number of features into the front without hampering the dataset’s utility. Finally, seven different ML classifiers are applied to evaluate the performance of the proposed model with six different evaluative measures. Algorithm 1 shows the pseudocode of the proposed model.

![Workflow of the proposed model](image)

Algorithm 1. Algorithm for proposed work

```plaintext
REQUIRE: Datasets D=\{D1, D2\}, Feature set (F)={f1, f2, ..., fn}
OUTPUT: Performance measures={Ac, Pr, Sn, Sp, Er, Fv}
D_i \in D, apply data scaling
for j = 1 to n
    \( f_{scaled} = \frac{f_j - \text{avg}(F)}{\text{max}(F) - \text{min}(F)} \)
    \( D_i \leftarrow f_{scaled} \)
end for
for D_i \in D, apply CFS
    for j = 1 to n
        calculate \( \delta \) with respect to \( f_c \) (\( f_c \) is the class label of \( D_i \))
        if \( (\delta > 0.5) \)
            for k = 1 to m
                \( D_{featured} \leftarrow f_j \)
            end for
        end if
    end for
Apply FPA () to \( D_{featured} \)
Initialize flower population \( m \leftarrow \{m_1, m_2, ..., m_k\} \)
Define objective function \( F_{min} () \), switch probability \( P \)
Find \( G^* \) in \( m \)
while (i<max_iteration)
    for j = 1 to n
        if (rand<P)
            Find out \( x_m^{i+1} \) for global search
        else
            Find out \( x_m^{i+1} \) for local search
        end if
    end for
end while
```

3. RESULTS AND DISCUSSION

This research work has been carried out considering two breast cancer relapse datasets, namely, WPBC and UMCIO, taken from the UCI-ML repository and employing some performance parameters, namely, accuracy (Ac), precision (Pr), sensitivity (Sn), specificity (Sp), error rate (Er), and F-value (Fv). These performance parameters are determined, as in (6)-(10), based on the obtained confusion matrix (CM) from the experiments on Jupiter Python Notebook. The 2x2 CM consists of four parameters, namely, true positive (P₁), true negative (N₀), false positive (P₀), and false negative (N₁).

\[
Ac = \frac{P_1 + N_0}{P_1 + N_1 + P_0 + N_0} \quad (5)
\]

\[
Pr = \frac{P_1}{P_1 + N_1} \quad (6)
\]

\[
Sn = \frac{P_1}{P_1 + N_0} \quad (7)
\]

\[
Sp = \frac{N_0}{N_1 + P_0} \quad (8)
\]

\[
Er = \frac{P_0 + N_0}{P_1 + N_1 + P_0 + N_0} \quad (9)
\]

\[
Fv = \frac{2 \times Pr \times Sn}{Pr + Sn} \quad (10)
\]

The experiments are performed in four ways. First, the seven traditional ML approaches are applied to the WPBC relapse dataset and recorded outcomes, as depicted in Table 2. Second, the hybrid approaches, i.e., the seven traditional ML approaches along with the CFS and FPA, and responses are recorded as depicted in Table 3. It can be observed that DT, with 74.75% accuracy, as depicted in Figure 2, outperforms others while considering only seven conventional ML approaches. In contrast, SVM, along with CFS and FPA, outperforms other hybrid approaches concerning the obtained accuracy of 84.85% in the case of the WPBC dataset, as depicted in Figure 3. In the third case, the seven traditional ML approaches are applied to the UMCIO breast cancer relapse dataset and recorded outcomes, as depicted in Table 4. Fourth, the hybrid approaches, i.e., the seven traditional ML approaches along with CFS and FPA, and responses are recorded as depicted in Table 5. It can be observed that NB, with 80.07% accuracy, as depicted in Figure 4, outperforms others while considering only seven conventional ML approaches. In contrast, DT, along with CFS and FPA, outperforms other hybrid approaches concerning the obtained accuracy of 83.92% in the case of the UMCIO breast cancer relapse dataset, as depicted in Figure 5. Table 6 describes a comparative study of the proposed hybrid approaches with some considered state-of-the-art works. It is quite difficult to overcome the previous results in different datasets. At the same time, this recommended work outperforms other state-of-the-art works in the case of employing the same datasets, as shown in Table 6.

<table>
<thead>
<tr>
<th>ML approaches</th>
<th>Ac (%)</th>
<th>Pr (%)</th>
<th>Sn (%)</th>
<th>Sp (%)</th>
<th>Er (%)</th>
<th>Fv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>74.24</td>
<td>76.36</td>
<td>77.06</td>
<td>70.79</td>
<td>25.76</td>
<td>76.71</td>
</tr>
<tr>
<td>LDA</td>
<td>73.74</td>
<td>74.56</td>
<td>78.71</td>
<td>67.78</td>
<td>26.26</td>
<td>76.58</td>
</tr>
<tr>
<td>KNN</td>
<td>72.22</td>
<td>74.26</td>
<td>72.12</td>
<td>72.34</td>
<td>27.78</td>
<td>73.17</td>
</tr>
<tr>
<td>NB</td>
<td>71.72</td>
<td>77.88</td>
<td>73.95</td>
<td>68.35</td>
<td>28.28</td>
<td>75.86</td>
</tr>
<tr>
<td>SVM</td>
<td>75.76</td>
<td>81.91</td>
<td>74.78</td>
<td>77.11</td>
<td>24.24</td>
<td>78.18</td>
</tr>
<tr>
<td>DT</td>
<td>74.75</td>
<td>82.18</td>
<td>72.17</td>
<td>78.31</td>
<td>25.25</td>
<td>76.85</td>
</tr>
<tr>
<td>RF</td>
<td>72.73</td>
<td>76.64</td>
<td>73.87</td>
<td>71.26</td>
<td>27.27</td>
<td>75.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hybrid approaches</th>
<th>Ac (%)</th>
<th>Pr (%)</th>
<th>Sn (%)</th>
<th>Sp (%)</th>
<th>Er (%)</th>
<th>Fv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS+FPA+LR</td>
<td>83.33</td>
<td>89.66</td>
<td>83.21</td>
<td>86.56</td>
<td>16.67</td>
<td>86.31</td>
</tr>
<tr>
<td>CFS+FPA+LDA</td>
<td>81.31</td>
<td>82.93</td>
<td>86.44</td>
<td>73.75</td>
<td>18.69</td>
<td>84.65</td>
</tr>
<tr>
<td>CFS+FPA+KNN</td>
<td>79.29</td>
<td>82.57</td>
<td>80.36</td>
<td>77.90</td>
<td>20.71</td>
<td>81.45</td>
</tr>
<tr>
<td>CFS+FPA+NB</td>
<td>80.31</td>
<td>86.07</td>
<td>82.68</td>
<td>76.06</td>
<td>19.69</td>
<td>84.34</td>
</tr>
<tr>
<td>CFS+FPA+SVM</td>
<td>84.85</td>
<td>90.59</td>
<td>84.81</td>
<td>84.93</td>
<td>15.15</td>
<td>84.81</td>
</tr>
<tr>
<td>CFS+FPA+DT</td>
<td>82.83</td>
<td>91.15</td>
<td>81.09</td>
<td>85.92</td>
<td>17.17</td>
<td>81.09</td>
</tr>
<tr>
<td>CFS+FPA+RF</td>
<td>80.81</td>
<td>85.22</td>
<td>82.35</td>
<td>78.48</td>
<td>19.19</td>
<td>83.48</td>
</tr>
</tbody>
</table>

A novel machine learning based hybrid approach for breast cancer relapse prediction (Ghanashyam Sahoo)
Figure 2. Obtained accuracies utilizing ML approaches on the WPBC dataset

![Figure 2](image-url)

Figure 3. Obtained accuracies utilizing hybrid approaches on the WPBC dataset

![Figure 3](image-url)

Table 4. Recorded responses employing ML approaches on UMCIO dataset

<table>
<thead>
<tr>
<th>ML approaches</th>
<th>Ac (%)</th>
<th>Pr (%)</th>
<th>Sn (%)</th>
<th>Sp (%)</th>
<th>Er (%)</th>
<th>Fv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>77.62</td>
<td>81.87</td>
<td>82.78</td>
<td>68.87</td>
<td>22.38</td>
<td>82.32</td>
</tr>
<tr>
<td>LDA</td>
<td>77.27</td>
<td>80.65</td>
<td>83.81</td>
<td>66.36</td>
<td>22.73</td>
<td>82.19</td>
</tr>
<tr>
<td>KNN</td>
<td>76.57</td>
<td>81.49</td>
<td>80.11</td>
<td>70.91</td>
<td>23.43</td>
<td>80.79</td>
</tr>
<tr>
<td>NB</td>
<td>80.07</td>
<td>86.59</td>
<td>82.45</td>
<td>75.51</td>
<td>19.93</td>
<td>84.47</td>
</tr>
<tr>
<td>SVM</td>
<td>78.67</td>
<td>84.92</td>
<td>81.72</td>
<td>73.01</td>
<td>21.33</td>
<td>83.29</td>
</tr>
<tr>
<td>DT</td>
<td>79.37</td>
<td>86.11</td>
<td>82.01</td>
<td>74.23</td>
<td>20.63</td>
<td>84.01</td>
</tr>
<tr>
<td>RF</td>
<td>76.57</td>
<td>82.12</td>
<td>80.77</td>
<td>69.23</td>
<td>23.43</td>
<td>81.44</td>
</tr>
</tbody>
</table>

Table 5. Recorded responses employing hybrid approaches on UMCIO dataset

<table>
<thead>
<tr>
<th>Hybrid approaches</th>
<th>Ac (%)</th>
<th>Pr (%)</th>
<th>Sn (%)</th>
<th>Sp (%)</th>
<th>Er (%)</th>
<th>Fv (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFS+FPA+LR</td>
<td>79.72</td>
<td>85.25</td>
<td>83.42</td>
<td>72.73</td>
<td>20.28</td>
<td>84.32</td>
</tr>
<tr>
<td>CFS+FPA+LDA</td>
<td>79.37</td>
<td>85.03</td>
<td>83.68</td>
<td>70.83</td>
<td>20.63</td>
<td>84.35</td>
</tr>
<tr>
<td>CFS+FPA+KNN</td>
<td>78.67</td>
<td>84.18</td>
<td>81.87</td>
<td>73.08</td>
<td>21.33</td>
<td>83.01</td>
</tr>
<tr>
<td>CFS+FPA+NB</td>
<td>82.52</td>
<td>88.52</td>
<td>84.82</td>
<td>77.89</td>
<td>17.48</td>
<td>86.63</td>
</tr>
<tr>
<td>CFS+FPA+SVM</td>
<td>80.77</td>
<td>87.29</td>
<td>83.16</td>
<td>76.04</td>
<td>19.28</td>
<td>85.18</td>
</tr>
<tr>
<td>CFS+FPA+DT</td>
<td>83.92</td>
<td>90.81</td>
<td>85.28</td>
<td>80.91</td>
<td>16.08</td>
<td>87.96</td>
</tr>
<tr>
<td>CFS+FPA+RF</td>
<td>80.07</td>
<td>86.81</td>
<td>82.72</td>
<td>74.74</td>
<td>19.93</td>
<td>84.72</td>
</tr>
</tbody>
</table>
A novel machine learning based hybrid approach for breast cancer relapse prediction (Ghanashyam Sahoo)

4. CONCLUSION
This proposed hybrid approach includes two breast cancer relapse datasets, WPBC and UMCIO breast cancer datasets. These raw data were further refined in this study using CFS and FPA. Data imputation, scaling, and other forms of pre-processing are applied to raw data first. Second, crucial feature correlations are used in a CFS to choose the discriminative features. The FPA identified the optimal combination of the chosen

![Figure 4. Obtained accuracies utilizing ML approaches on the UMCIO dataset](image1)

![Figure 5. Obtained accuracies utilizing hybrid approaches on the UMCIO dataset](image2)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Methodologies</th>
<th>Dataset (s)</th>
<th>Ac</th>
<th>Pr</th>
<th>Sn</th>
<th>Sp</th>
<th>Fv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad et al. [6]</td>
<td>C4.5 DT, SVM, ANN</td>
<td>ICBC</td>
<td>95.7</td>
<td>--</td>
<td>97.1</td>
<td>94.5</td>
<td>--</td>
</tr>
<tr>
<td>Vazifehdan et al. [7]</td>
<td>DT, KNN, SVM</td>
<td>Omid Hospital</td>
<td>89.29</td>
<td>--</td>
<td>78.55</td>
<td>92.83</td>
<td>--</td>
</tr>
<tr>
<td>Chakradeo et al. [8]</td>
<td>LR, SVM, DT</td>
<td>WPBC</td>
<td>97.93</td>
<td>93.36</td>
<td>91.00</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Aavula and Bhramaramba [9]</td>
<td>XBPF, RFSS</td>
<td>SEER</td>
<td>98.90</td>
<td>--</td>
<td>57.54</td>
<td>59.86</td>
<td>--</td>
</tr>
<tr>
<td>Lou et al. [10]</td>
<td>ANN, KNN, SVM, NB, COX</td>
<td>Questionary</td>
<td>98.87</td>
<td>97.90</td>
<td>95.89</td>
<td>99.54</td>
<td>--</td>
</tr>
<tr>
<td>Wang et al. [11]</td>
<td>K-CNN</td>
<td>NMEDW</td>
<td>--</td>
<td>55.7</td>
<td>46.8</td>
<td>98.1</td>
<td>50.0</td>
</tr>
<tr>
<td>Momenzadeh et al. [12]</td>
<td>HMM</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Alzu’bi et al. [14]</td>
<td>J48, NB, Bag, LR, SVM-SMO, KNN, MLP, OneR, PART, SVM, LR, LDA, SFS, CB, BSO, GBSO</td>
<td>KAUH</td>
<td>92.25</td>
<td>--</td>
<td>92.3</td>
<td>88.7</td>
<td>--</td>
</tr>
<tr>
<td>Alwohabi et al. [15]</td>
<td>SVM, LR, LDA, SFS, CB, BSO, GBSO</td>
<td>WPBC, UMCIO</td>
<td>82</td>
<td>81</td>
<td>82</td>
<td>96</td>
<td>--</td>
</tr>
<tr>
<td>Ebrahim et al. [16]</td>
<td>DT, LDA, LR, SVM, ET, DNN, RNN, and PNN</td>
<td>NIH, USA</td>
<td>98.7</td>
<td>97.4</td>
<td>76.4</td>
<td>--</td>
<td>85.2</td>
</tr>
<tr>
<td>Proposed hybrid approach</td>
<td>CFS+FPA+7 ML approaches</td>
<td>WPBC, UMCIO</td>
<td>84.85</td>
<td>91.15</td>
<td>86.44</td>
<td>86.56</td>
<td>86.31</td>
</tr>
</tbody>
</table>

Table 6. Comparison of the proposed hybrid approach with some considered state-of-the-art works
characteristics as the means to an accurate answer. We tested the efficacy of the suggested technique using a 10-fold cross-validation stratified. As a result, the suggested hybrid strategy successfully selected characteristics and increased classification accuracy for breast cancer recurrence. When looking at just seven traditional ML methods, DT comes out on top with an accuracy of 74.75%, whereas in the case of the WPBC dataset, SVM combined with CFS and FPA achieves the highest accuracy of any hybrid method (84.85%). It is clear that NB performs best with an 80.07% accuracy when just seven standard ML techniques are included. In contrast, in conjunction with CFS and FPA, DT performs best when considering the accuracy of 83.92% achieved on the UCMICIO breast cancer dataset. This study can further be implemented using other various breast cancer relapse datasets with different attributes and applying the ensemble approaches to enhance the outcomes.

REFERENCES

A novel machine learning based hybrid approach for breast cancer relapse prediction (Ghanashyam Sahoo)