Applying green Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$ oxyfluoride phosphorus on white emitting diodes

Van Liem Bui1, Dieu An Nguyen Thi2

1Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
2Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

ABSTRACT

Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$, a new green-emitting and its photoluminescence (PL) characteristics for white lighting-emitting diodes (w-LEDs), have been analyzed and generated. This phosphor displays a strong absorption range between ultraviolet (UV) and blue region, along with a wide green emission range of 502 nm. The procedure for concentration suppression and Eu$^{2+}$ luminous longevity has been investigated using Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$ phosphors. Key characteristics for manufacturing w-LED lamps, such as photoluminesce based on temperature, microstructure, morphology, CIE value and quantum efficiency, were also investigated in Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$. The findings show that Ca$_2$Al$_3$O$_6$F:Eu$^{2+}$ is a suitable option for almost UV-excited w-LEDs as a green component.

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

Contemporary phosphorus conversion of white lighting-emitting diodes (w-LEDs), due to their major benefits over standard fluorescent lamps and incandescent bulbs, has received significant interest, such as extended operating duration, substantial energy efficacy, low heat emission, and exempt from mercury. The majority of merchandising w-LEDs are made up of a mix including blue emitting LEDs as well as yellow phosphorus Y$_3$Al$_5$O$_{12}$:Ce$^{3+}$ (YAG:Ce) [1]-[3]. Due to limited amount of red emitting element, these w-LEDs is poor in term of color rendering indice (CRI). w-LEDs, produced with a near ultraviolet (n-UV) LED of 350-420 nm, have therefore been examined to enhance the CRI values by means of three main colour outputs blended from red, green and blue color phosphors [4]-[6]. The luminous qualities of the phosphor employed substantially influence the final presentation of w-LED-based units. Studies into novel phosphors excited by n-UV light have swiftly grown and turned out to be among of the most popular areas for research in the phosphorus field. Since the Eu$^{2+}$ 4f-5d transition is susceptible to crystal with covalency, Eu$^{2+}$-doped phosphors typically exhibits a better spectrum absorption of 250-400 nm, equal to ultraviolet as well as near-ultraviolet chip of lighting-emitting diode (LED) [7]-[9]. Moreover, large emitting bands are shown, ranging between blue color and red color bands. In order to solve greater efficiency concerns, improved colour rendering in company with enhanced chemical and heat consistency, several attempts are under way to create novel w-LED phosphorous products including Eu$^{2+}$ silicates, aluminates, nitriles/oxynitrides featuring compounds incorporating halogen [10]-[13].

Currently, oxides with halogen-containing rare earth ions are promising as w-LED phosphorus, which, because of the introduction of hosts halogen particles (F, Cl, and Br), has adjustable luminous
characteristics. In the current quest for novel compounds with fascinating luminescence characteristics with the arrival of rare-earth particles, oxyhalides, notably oxyfluorides, have been a revived target of experimental production [14, 15]. One recent example of oxyfluoride-based phosphors was Sr₂Al₂O₆F:Ce³⁺ focused, with efficient blue-green Ce³⁺ in n-UV excitation, as well as developing several modified Sr₂Al₂O₆F-based phosphors. The new host Sr₂Al₂O₆F’s structural composition is obtained by replacing F with O₂, which is balanced through replacing Al³⁺ with Si⁴⁺ in Sr₂SiO₅. A recent study done by Im et al. revealed that it can be solved between Sr₂Al₂O₆F and Sr₂SiO₅, which are almost isostructural, and that certain good optimal luminescence characteristics have been documented also [16]. We thus note that Ca₂Al₂O₆F is a noteworthy phosphorus host with a tetragonal melilitic-type configuration. The novel molecule with the chemical formula Ca₂Al₂O₆F in this arragement can be produced if the chemical replacement of F for O₂, which is made up by Al³⁺ for Si⁴⁺, is likewise efficient. The early structural data of Ca₂Al₂O₆F, entirely different than the Ca₂Al₂SiO₇ stage, may be attained on the query premise in the joint committee on powder diffraction standards (JCPDS) dataset. Nevertheless, when we check for novel phosphorus compositions of renownful phosphorus hosts, it obviously offers a successful method. Ca₂Al₂O₆F phases [17]-[19]. Here, an effective host for phosphorus materials for the Ca₂Al₂O₆F is suggested. We notice and note down all the features of the compounds Eu²⁺ doped Ca₂Al₂O₆F, which could be w-LEDs stimulated with n-UV chip phosphorous, such as the synthesis, initial structural characterization and luminesce characteristic.

2. RESEARCH METHOD

2.1. Ingredients and production

A solid-state reaction, which is in high heat, approach produced the host chemical Ca₂Al₂O₆F and the Ca₂Al₂O₆F:xEu²⁺+ phosphor. Initial ingredients include Aldrich 99.9% of CaCO₃, Al₂O₃, CaF₂ and Eu₂O₃ (Aldrich, 99.995%). All initial ingredients was combined and ground in a standard process, according to the stated stoichiometric ratio. To counteract the F source deficiency at extreme temperatures, a little excess of CaF₂ (5 wt% above stoichiometry) is needed. After the combination were completely ground in a mortar of agate, they were put in an aluminum crucible and were burned at 1250 °C (N₂-H₂ 1/4-95: 5) for 4 hours in a reducing environment. Afterwards, the combination was chilled to normal temperature in a furnace before being powdered for later [20], [21]. The final phosphor product is applied on a w-LED device used for this study, whose model can be seen in Figure 1.

![Figure 1. Photograph of w-LEDs](image)

2.2. Reflection and Eu²⁺ doped Ca₂Al₂O₆F photoluminescence spectrum

As shown in (1) is an acceptable match for the emission peak and the excitation edge data according to Van Uitert report 30 on Eu²⁺ in an appropriate matrix. The potential crystallographic site in Ca₂Al₂O₆F replaced by Eu²⁺ may be examined hypothetically on the basis of this equation. This equation is shown as (3) [22], [23].

\[
E = Q \left[1 - \left(\frac{V}{4} \right)^{\frac{1}{2}} \times 10^{-\frac{\mu_{c}^{2}}{\pi E_{a}}} \right]
\]

(1)

In the first equation, E represents the energy location of the rare terrestrial particle's d-band border (cm⁻¹), Q represents the energy location of the free particle's lower d-band edge (34 000 cm⁻¹ for Eu²⁺) while V is the "active" cation value, in this case V=2 for Eu²⁺. Eₐ denotes the anion-forming ions electrical affinity,
which is variable in distinct anion complexes as Eu\(^{2+}\) is involved to other coordinate numbers. Here, \(E_u\) is calculated roughly as 2.5, as seen in previous designs of the melilit; \(n\) denotes the "active" cation’s immediate shell quantity of anions while \(r\) is the host cation radius (Ca\(^{2+}\)) substituted by the "active" cation (Eu\(^{2+}\)).

According to Blasse, the crucial spacing \(R_c\) between two equal centers is measured as the area at which the conversion of energy is equivalent to the radiative energy emissions likelihood of Eu\(^{2+}\) [24]. The calculation of the \(R_c\) value is based on 32 as shown in (2),

\[
R_c \approx 2\left(\frac{W}{\pi n c^2 N}\right)^{\frac{1}{3}}
\]

where \(R_c\) is the median distance from the closest Eu\(^{2+}\) particles at \(x\). Utilizing \(V=1819.26\) A, \(N=12\), as well as \(c=0.05\), the crucial conversion range of Eu\(^{2+}\) in Ca\(_2\)Al\(_2\)O\(_4\)F is 17.96 A. Because interaction between Eu\(^{2+}\) ions is only dominant over small ranges, the contact mechanism does not play a role in conversion of energy among Eu\(^{2+}\) particles in Ca\(_2\)Al\(_2\)O\(_4\)F phosphorous (5 A typical crucial ranges). Consequently, only through electric multipolar connections would the energy transfer take place in the current situation. Three multipole-multipole interactions are based on the theory of Dexter: dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole, accordingly. We can calculate the emission intensity \(I\) of the multiple interactions by adjusting the emitting density from the emitting level featuring the multipolar contact [25], as shown in (3).

\[
I = K \left[1 + \beta(x)^{\delta^{-1}}\right]^{-1}
\]

In which \(I\) denotes the emitting density \(x\) is the activator particle concentration, the constant of \(K\) and is \(\beta\) the multipole-multipole role interactions, the values of 6 (dipole-dipole), 8 (dipole-quadrupole) or 10 (quadrupole-quadrupole), respectively. The phosphor film of real multi-chip white LED (MCW-LEDs) is replicated by flat silicone films, according to the LightTools 9.0 program and Monte Carlo technique. This simulation works across two major stages: the MCW-LED configuration models and the optic characteristics should be defined as well as constructed. Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) concentration variation thus regulates the phosphor compounding optical effects effectively. We must make some contrast to assess the impact on MCW-LED lamps emission using YAG:Ce\(^{3+}\) and Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) phosphor compositions. The two types of compounds have to be clarified with median CCTs range between 3,000 K; 4,000 K; and 5,000 K two-layer distant phosphor. A thorough description of the conformal phosphor compounder MCW-LED lamps with a 8500 K median CCT is given in Figure 1 MCW-LEDs modeling of whose components do not contain Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) is also recommended. The reflector measures are 8, 2.07 and 9.85 (measured in mm) in bottom length, height, and top surface, correspondingly. The composite compound of conformal phosphor wraps nine chips with a thickness of each is 0.08 mm. Every LED chip is connected with the reflector chamber whose base region is 1.14 mm\(^2\) and altitude is 0.15 mm. The illuminating beam is 1.16 W for every blue chip, whereas the maximum wavelength is 453 nm.

3. RESULTS AND ANALYSIS

The shift in green Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) concentration and yellow YAG:Ce\(^{3+}\) phosphor concentration in Figure 2, is the inverse. Such modification has these purposes: the first is for the preservation of average CCT, the second is for the absorption and dispersion of two phosphor layers. This ultimately impacts the hue standard and the effectiveness of the w-LEDs illuminating beam. w-LEDs colour standard may therefore be determined by selecting Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\). The YAG:Ce\(^{3+}\) concentration refused the preservation of the average CCTs while the Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) went from 2% to 20% wt. The same applies to w-LEDs with colour temperatures ranging between 5,600-8,500 K.

The influence of the green Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) phosphor concentration on the transmitting bands of color of w-LEDs can be seen clearly in Figure 3. It is feasible to make a selection based on the criteria established by the producer. w-LEDs with excellent grade colors might luminescent flux w to a small extent. The spectral area like Figure 3 is a synthesis of white light. The spectrum of this figure is 5,000 K. The intensity trend with Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) concentration obviously increases two light spectrum regions 420-480 nm and 500-640 nm. The rise in the two-range bands of color shows a growth of the luminous productivity. In addition, w-LEDs have improved blue-light dispersion, implying that scattering in the phosphorous layer and w-LEDs expanding, leading to color homogeneity. This is a significant result for Ca\(_2\)Al\(_2\)O\(_4\)F:Eu\(^{2+}\) applications. In details, the high-temperature remote phosphor arrangement's color homogeneity is

challenging to regulate. This investigation verified that the color quality of WLEDs may be improved by \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \), including the 5,600 K less high and the 8,500 K high of hue heat.

This article illustrates the illuminating flux efficacy emitted from such distant phosphorus layer. The results in Figure 4 in particular indicated that the emitted luminous flux grew dramatically when the \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) concentration rised 2%-20% wt. The hue deviation at all three average CCTs has been considerably decreased according to the findings of Figure 5, using phosphorus \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \). The red phosphor absorption clarifies this. The blue phosphoric ions in the \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) phosphorous receive the blue light from an LED chip, converting it to green light. \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) particles receive the LED chip yellow and blue light. Yet, the LED chip blue light absorption is more severe owing to the material's absorption characteristics than these two absorbs. Thus, using \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \), the green light concentration in w-LEDs as well as the color consistencies index improved. Color uniformity among modern w-LED lamp parameters is among the major criteria. The cost of w-LED light increases as the color homogeneity indice rises. \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) is cheap which is an advantage. This allows the extensive usage of \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \).

![Figure 2. The modification of phosphor concentration to keep the median CCT value](image1)

![Figure 3. \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) concentration functions as the 5,000 K w-LEDs emission spectrum](image2)

![Figure 4. \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) concentration functions as the w-LEDs luminance flux](image3)

![Figure 5. The hue deviation of w-LEDs as a function of \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) concentration](image4)

In analyzing the quality of colors of w-LEDs, color uniformity is simply one criterion. With just a elevated hue uniformity rating, acceptable color quality can indeed be claimed. Latest research thus gives a colour rendering indice and a colour quality scale. As a light illuminates the color rendering indice, item’s genuine color is evaluated. This color imbalance is due to the excessive green light ranging from blue, yellow and green. w-LED colour quality suffers as a result, and color dependability declined. The findings in Figure 6 suggest a small drop in CRI when the distant \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) phosphorus layer is present. These are allowed, though, because CRI is just a color quality scale (CQS) vulnerability. The CQS is more significant and difficult to attain when comparing between CRI and CQS. This is an index of three elements: first, the color rendering index, second is the CQS and third is the preference of the viewer. For those prominent elements, CQS is virtually a genuine total colour quality measure. Figure 7 demonstrates the improvement of CQS in the presence of the remote phosphorus \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) layer. Furthermore, with a concentration of

Applying green \(\text{Ca}_2\text{Al}_3\text{O}_6\text{F}:\text{Eu}^{2+} \) oxyfluoride phosphorus on white emitting diodes (Van Liem Bui)
Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ less than 10% wt, QCS does not vary considerably when the level of the phosphor increases. CRI and QCS are lowered considerably because of the severe color loss when green is dominant with a Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ concentration over 10% wt. Applying green phosphorus Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ thus requires a proper concentration selection.

![Graph showing color rendering index (CRI) and color quality scale (CQS) as a function of phosphor concentration.](image1)

![Graph showing Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ concentration functions as a function of the CRI and CQS.](image2)

4. CONCLUSION

This article depicts the influence of the green Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ double-level phosphor structure on optical characteristics. The study shows that Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ is an adequate solution to enhance hue homogeneity based on Monte Carlo computer simulations. It relates not just to w-LEDs of 5,000 K, but also to ones with a color temperature higher than 8,500 K. Therefore, the results of this study have met the goal of enhancing colour, light, and the phosphor remote configuration is extremely difficult. But CRI and QCS have a slight disadvantage. When the Ca$_2$Al$_2$O$_4$:Eu$^{2+}$ concentration is greatly raised, the CRI decreases substantially with the QCS. The right concentration must thus be chosen based on the manufacturer's aims. In terms of increased hue homogeneity and illuminating WLEDs, this study has supplied a wealth of useful data which will be helpful in future research.

REFERENCES

BIographies of Authors

Van Liem Bui received a Bachelor of Mathematical Analysis and master’s in mathematical Optimization, Ho Chi Minh City University of Natural Sciences, Viet Nam. Currently, he is a lecturer at the Faculty of Fundamental Science, Industrial University of Ho Chi Minh City, Viet Nam. His research interests are Mathematical Physics. He can be contacted at email: buivanliem@iuh.edu.vn.

Dieu An Nguyen Thi received a master of Electrical Engineering, HCMC University of Technology and Education, Viet Nam. Currently, she is a lecturer at the Faculty of Electrical Engineering Technology, Industrial University of Ho Chi Minh City, Viet Nam. Her research interests are Theoretical Physics and Mathematical Physics. She can be contacted at email: nguyenthiedieuan@iuh.edu.vn.