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ABSTRACT

A charge pump for phase locked loops (PLL) with a novel current mismatch com-
pensation technique is proposed. The proposed circuit uses a simple yet effective
current stealing-injecting (CSI) technique and feedback to reduce mismatch between
the negative-channel-metal-oxide (NMOS) and positive-channel-metal-oxide (PMOS)
transistors. The current stealing transistor steals the current from a replica branch and
mirrors it to the output where it is added to the output branch by the injecting tran-
sistor. A feedback mechanism is used to set the drain voltages of both branches to
be equal and mitigate channel length modulation and ensure high accuracy. The pro-
posed circuit was designed on Silterra 130nm technology and simulated using Cadence
Spectre. The simulation results show that the proposed circuit yields a maximum of
0.107% and minimum of 0.00465% current mismatch while operating at a low supply
voltage of 800mV for a range of 100mV to 700mV. The proposed design uses only
one rail-to-rail op amp for compensating the mismatch and an addition of 4 transistors
and utilizing 75% of the supply voltage for high voltage controlled oscillator (VCO)
tuning range.
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1. INTRODUCTION
Recently, there has been an increasing demand for continuous supply of integrated circuits or better

known as chips, for various purposes, the most recent and prevalent applications being 5G wireless chips and
processors. One common block in these chips is the phase locked loops (PLL). The motivation of this work is
to build one of the most important building blocks in a PLL system, namely, the charge pump. As mentioned
earlier, the PLL has seen usage in chips, specifically serializes and deserializes (SERDES) protocols and radio
frequency (RF) transceiver systems. In SERDES protocols, the PLL in the transmitter chain is responsible for
the timing functionality [1]-[3]. Meanwhile, in RF transceivers, the PLL is used for the up-conversion and
down-conversion of the signal through the mixer [4]-[6]. Apart from that, PLLs can also be used as frequency
multipliers in microcontrollers, autonomous batteryless circuits [7] and as a clock generator in wireless sensor
nodes (WSN) for health monitoring systems [8].

This work highlights the research problem with the charge pump in the PLL that can disrupt the PLL
operation due to the current mismatch of the up current carried by the positive-channel-metal-oxide (PMOS)
and down current carried by the negative-channel-metal-oxide (NMOS). Specifically, the current mismatch
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causes reference spur and static phase offset in the PLL leading to PLL spectral impurity [9]-[12]. The im-
plication of the spectral impurity in the PLL caused by current mismatch in the SERDES system is that the
reference spur causes jitter in the PLL and degrades the timing capabilities on the transmitter side. Meanwhile,
in the RF transceiver the implication of an impure spectral performance in the PLL manifests itself in the form
of an overlap in the desired signal and the nearby adjacent signal when the mixer up-converts an RF signal.
Therefore, it is imperative that the current mismatch problem be minimized in the PLL.

Consider a conventional current steering charge pump depicted in Figure 1. The current mismatch
between the PMOS and NMOS exists due to the difference in the transistor electron mobility (µCox) and
threshold voltage (Vth) values of the different transistors, leading to different current values carried by the
NMOS and PMOS transistors at the output branch namely N1 and P1 respectively. On top of that, the channel
length modulation causes the current through these transistors to vary largely due to variation in Vctrl. Since
the Vctrl is supplied at the drain of both NMOS and PMOS transistors, the current will vary largely, hence
degrading the accuracy. The problem is made even worse at lower voltage, since the current mirrors have
limited headroom to operate in saturation, especially when the Vctrl is close to the upper and lower rails, these
PMOS and NMOS, will be pushed to the triode region and hence degrade the current mirror performance. This
translates to limited Vctrl range in which the charge pump can operate optimally and consequently affect the
tuning range of the voltage controlled oscillator (VCO). Ideally, a VCO should have a wide tuning range to
achieve a wide frequency range, which translates to high VCO gain and ease of PLL locking.

Figure 1. Conventional current-steering charge pump

This work attempts to minimize the current mismatch by using negative feedback technique to ensure
the down current in the NMOS tracks the up current in the PMOS. The novelty of this work compared to other
works in literature is the technique in which the feedback configuration is carried out, which is using a simple
yet effective current stealing-injecting (CSI) technique and feedback to reduce mismatch between the NMOS
and PMOS transistors. Other than that, this work is capable of operating down to a low supply voltage of 0.8V.
Lastly, the amount of components used in the proposed charge pump design are far less compared to those
reported in literature. Specifically, the proposed charge pump only uses one rail to rail op amp and an addition
of 4 transistors.

2. RELATED WORKS IN CHARGE PUMP DESIGN
2.1. Advanced mismatch calibration techniques

Lin et al. [13] proposed two techniques to overcome the charge pump mismatch, namely by using
a dynamic charge pump with current-matching capabilities. Other than that, they proposed introducing a DC
offset to the output of the charge pump in order to increase linearity and decrease spur in the PLL. A PLL
employing the random pulsewidth matching (RPWM) and sub-sampling charge pump (SSCP) technique was
demonstrated in [14]. This work attempts improve the spur performance using the mentioned techniques by
averaging, randomizing and lastly reducing the ripples at the output of the charge pump which is fed into the
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VCO. The works by [15]-[17] employ digital calibration techniques to calibrate the charge pump mismatch.
The typical blocks involved include a lock detector (LD), some form of phase detector, a digitally-controlled
charge pump and calibration circuitry. The calibration circuitry can be in the form of digital-to-analog converter
(DAC), filter and digital logics, as is the case in [15] or even sucessive-approximate register (SAR) based logic
[16]-[17] and controls the digitally-controlled charge pump calibration process. The idea is basically the same,
that is, the LD functions to detect whether the PLL has been locked and signals the start of calibration. The
phase detector, either bang bang phase detector (BBPD) [15]-[16] or high resolution phase detector (HRPD)
[17], functions to detect the difference of phase between the reference frequency and the feedback frequency.
HRPD is an improvement of the BBPD proposed by [17] and is superior in terms of accuracy.

2.2. Analog-centric techniques
Other more traditional approaches are more analog centric in the way that they employ negative feed-

back loops and replica bias techniques to handle the current mismatch [19]-[24]. Some of these techniques are
viable only due to the abundance of voltage headroom while others are inherently complex in terms of design
implementation, that is they require additional circuitry for current compensation. For example, Figure 2(a)
shows the charge pump architecture by [18] in which a cascode structure was used. Since the transistors need
to be in saturation region, the VDS of each stacked transistor must be high, hence the output voltage, Vctrl is
limited to a range of roughly 2VDSn to VDD − 2VSDp. On top of that, this technique is only viable when there
is ample headroom for the transistors to saturate and is not suitable for low voltage design.

With regards to complexity, while the mentioned works use the concept of negative feedback, the key
here is to use as fewer components as possible for implementing the compensation schemes. As an example,
Figure 2(b) shows the charge pump design proposed by [19] in which a lot of extra circuitry was added in order
to compensate the current mismatch such as 3 op amps, capacitors and resistors. Other than that, the work
by [20] uses 1 rail to rail op amp while also adding extra circuitry for current compensation and mismatch
cancellation. Hwang et al. [21] use 2 op amps in a dual feedback loop to compensate the current mismatch. On
the other hand, Lozada and Espinosa [23] designed a fully differential charge pump which requires double the
normal circuitry to operate. A bulk-driven charge pump in triple well technology was proposed by [24] which
uses 1 op amp with the addition of several transistors and also resistors.

(a) (b)

Figure 2. Examples of charge pump architectures; (a) A cascode charge pump design by [18], (b) A charge
pump design by [19] utilizing 3 op amps as the compensation scheme

2.3. Low voltage techniques
The recent trend of CP design is moving towards low supply voltage architectures. Some of the recent

CP circuit design techniques that have been employed for low voltage operation include gate switching CP [25]-
[26], DTMOS transistors for leakage control [27], diode-connected MOS CP [28], non-cascode source-switch
CP [29], clock-gated CP with tunable low pass filter (LPF) [30] and dual feedback loop CP [31].

From the literature survey, it can be concluded that there is room for improvement in terms of the
complexity of the architecture used in order to compensate the current mismatch. It can be seen that previous
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works, especially the advanced techniques use a lot of components or blocks in implementing the compensation
such as SAR and DAC. This could potentially increase power consumption and area of the PLL. The analog-
centric approach also has the advantage of simplicity and can be further exploited to operate at lower voltage.
Similar to the advanced techniques, existing analog-centric architecture uses bulky compensation circuitry that
can be further reduced to save area and power consumption. This work will focus on employing a current
mismatch reduction technique that minimzes number of components used so as to reduce complexity while
operating at low supply voltage. At the same time, the employed technique maximizes the utilization of the
limited headroom at low supply voltage for high VCO tuning range.

3. RESEARCH METHOD
The proposed charge pump is shown in Figure 3. It consists of the current steering charge pump, a

replica branch to replicate the output branch and a pair of current stealing-injecting transistors. The replica
branch is added to the current steering charge pump to extract the current mismatch via a current stealing
transistor and inject the current back to the output branch. The current stealing transistor MN7 steals some
current from the replica branch and mirrors it to the transistor MN6 which then injects the current to the output
branch. The op amp is used in negative feedback configuration to set nodes A and B to be equal and ensure
that the transistors in both branches have the same VDS and hence have the same residue current flowing into
MN7 and out of MN6. This scheme reduces the mismatch as the current injected into output branch through
MN6 is forced to track the residue current from the replica branch via MN7 using negative feedback. In order
to ensure the feedback is functioning, the ratio of the current flowing through MN4 and MN3 to MN5 should
not be equal to 1. This is because if the current flowing through MN6 and MN7 is too low, the feedback will
fail to operate. In this work, the ratio of MN5 to MN4 is 2:1, that is the current flowing through MN4 and MN3
is half of that in MN5. Table 1 shows the device sizing of the proposed charge pump circuit.

100uA

MN1 MN2

MN3 MN4 MN5

MN6 MN7

MN8 MN9

MP1 MP2 MP3 MP4 MP7MP5 MP6

100uA

Vctrl

UPB UP DN DNB

Output Branch Replica Branch

CSI Transistors

VG

A B

VG

1         :          2

Figure 3. The proposed current-steering charge pump with current stealing-injecting (CSI) technique and
feedback

The sourcing and sinking of current of the charge pump will be controlled by a block called the
phase frequency detector (PFD) in the PLL. The PFD will output a high or low signal to the switches, namely
transistors MN1, MN2, MN8 and MN9. For example, if the UP signal is high, while DN signal is low, the
branch with MN2 will hog the current and MP2 will mirror the current to the output stage. Meanwhile, the
branch containing MP7 and MN9 will hog all the current since the DN signal is low, leaving no current to flow
from MP6 to MP5.
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Table 1. Device sizing for the proposed charge pump design
Device Size Device Size
MP1 30u/1u, m=2 MN2 4u/130n
MP2 30u/1u, m=2 MN3 20u/1u, m=4
MP3 30u/1u, m=2 MN4 20u/1u, m=4
MP4 30u/1u, m=2 MN5 20u/1u, m=8
MP5 30u/1u, m=2 MN6 10u/1u, m=4
MP6 30u/1u, m=2 MN7 10u/1u, m=4
MP7 30u/1u, m=2 MN8 4u/130n
MN1 4u/130n MN9 4u/130n

The opposite happens when the UP signal is low and DN is high. In order to ensure wide compliance
range of the charge pump, a rail to rail input op amp must be used. This work uses a rail-to-rail amp by [32] for
constant-gm operation. The op amp used in this design uses a common drain input stage as a DC level shifter
to shift the input voltages down and ensure constant-gm operation, followed by a common source stage. The
input stage is followed by a current summing stage and a folded cascode load. A push-pull configuration was
used for the output stage with miller compensation. The op amp design is depicted in Figure 4.

Figure 4. The rail-to-rail input op amp with common drain input stage as DC level shifter for constant-gm
operation [32]

4. RESULT AND DISCUSSION
A pre-layout SPICE simulation was done using Cadence Spectre EDA tool to verify the effectiveness

of the proposed technique in reducing the current mismatch in the charge pump. The simulation environment
is under typical transistor conditions at a temperature of 27◦. Figure 5(a) shows the drain current that is drawn
by transistors at the output branch, namely MP3, MN3, MN6 and the net current. As explained previously,
the drain current of MP3 carries 100µA, while MN3 carries 50µA. The drain current of MN6 is mirrored from
MN7 and it tracks the difference of current between the MP4 and MN4, which ideally is 50µA. The drain
current of MN6 is injected to the output node A to compensate for the mismatch. The net output current is
given by the sum of the drain currents of MP3, MN3 and MN6. As depicted, it can be seen that the net output
current is relatively constant in the 0µ regime, signifying that the output current mismatch is minimized.

Figure 5(b) shows the comparison of current mismatch with and without the current stealing-injecting
and feedback technique. For the conventional charge pump, it can be seen that the current mismatch varies
greatly when the Vctrl is varied from 0V to 0.8V, achieving up to an absolute current mismatch of 26µA or 26%
across the range of 100mV to 700mV. In contrast, the proposed charge pump circuit is relatively constant with
an absolute maximum and minimum current mismatch of only 107 nA or 0.107% and 4.65 nA or 0.00465%
respectively for the same range with 75% utilization of the headroom. The stark contrast between the current
mismatch of the proposed and the conventional charge pump is a testament to the effectiveness in reducing the
current mismatch in charge pumps. On top of that, the proposed circuit guarantees a mismatch of less than 1%
from 31mV to 737mV which is 87.5% of the available headroom. From the Figure 5, it can also be noticed that
when Vctrl approaches the upper and lower supply rails, the current mismatch deteriorates as the transistors
MP3, MP4 and MN3 and MN4 will go into the linear region.
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(a) (b)

Figure 5. The current mismatch simulation results; (a) Drain current of transistors at the output branch, (b)
Current mismatch when Vctrl is varied from 0 to 0.8V

In order to ensure the proposed circuit is not oscillating, the stability of the negative feedback loop
in the charge pump design is analyzed. Figure 5(a) shows the gain and phase margin of the proposed charge
pump over the input Vctrl range of 100mV to 700mV. As can be seen, the achieved gain is from 79.58 dB
to 112.23 dB. The phase margin range is from 57.8◦ to 68.9◦ indicating that the design is stable since it is
within the vicinity of 60◦. A Monte Carlo statistical simulation is carried out to verify under process variation,
namely the (µCox) and (Vth). By running the Monte Carlo simulation, the extent of process variation on the
current mismatch can be gauged. The Monte Carlo was run using Cadence Spectre tool with the confidential
model files as the input given by the foundry, which cannot be disclosed. Figure 6(b) shows the Monte Carlo
simulation of the proposed charge pump.

(a) (b)

Figure 6. Stability and Monte Carlo simulation results; (a) The gain and phase margin of the negative
feedback loop in the proposed charge pump design, (b) Statistical Monte Carlo simulation for current

mismatch with 200 runs

The design achieved an absolute maximum current mismatch with a mean of 107.4nA and standard
deviation of 1.76nA, proving that it is a robust design over global and local variations. It can be seen that
although subjected to process variation, the Monte Carlo simulation shows that the mismatch closely agrees
with the pre-layout simulation under typical conditions. Table 2 summarizes the performance of the proposed
CSI relative to previous works in charge pump design. From the table, it can be seen that the proposed design
has the lowest current mismatch among all other works reported in literature. The calculation of the percentage
of utilization is (High boundary−Low boundary)/V DD ∗ 100% In the proposed design, the high boundary
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is 700mV while the low boundary of the 100mV. The boundaries are taken at 100mV from the supply voltage
(800mV) and ground (0V) to ensure the transistors at the output and replica branch have sufficient VDS to
operate in saturation. With a supply voltage (VDD) of 800mV, the proposed charge pump yields a percentage
of utilization of 75%. On top of that, the design operates at a supply voltage of 800mV, which is the lowest
among all the other works and still manage to achieve 75% utilization, on par with or better than other works.
This superior current mismatch performance will enable it to minimize the effects of spur on the PLL and
ensure spectral purity.

Table 2. Comparison of previous works in charge pump design
This Work [20] [21] [22] [23] [24] [25]

Technology (nm) 130 180 65 130 65 180 180
Supply Voltage (V) 0.8 3 1.0 1.2 1.1 1.8 1.2
Vctrl Range (V) 0.1-0.7 0.2-2.7 0.1-0.85 0.2-1 0.1-0.92 0.3-1.5 0.2-1
Absolute Current Mismatch (%) 0.005-0.1 2.1 0.023-0.432 3.2 0.05 0.32 0.9
Up/Down Current (µA) 100 600 150 100 1000 100 140
Percentage of Utilization (%) 75 83.33 75 66.67 74.5 66.67 66.67
Standard Deviation (%) <0.02 NA <0.03 1.7 <2 <3.5 NA

5. CONCLUSION
A novel charge pump utilizing the CSI technique and feedback was designed to minimize the current

mismatch which is important to reduce spur which will deteriorate the spectral purity of the PLL. The proposed
charge pump uses only 1 rail to rail op amp in addition to 4 more transistors for the compensation scheme, which
is low in complexity, resulting in high accuracy and minimal mismatch. Pre-layout SPICE simulation results
using Cadence Spectre EDA tool show significant improvement over existing architectures in literature in terms
of current mismatch, achieving a maximum and minimum mismatch of 0.107% and 0.00465% respectively at
800 mV supply voltage from a range of 100mV to 700mV. The design is also robust across process variations
and is suitable for low voltage applications. In the future, the layout for the charge pump will be design for
silicon fabrication. On top of that, the proposed charge pump design will be integrated at the top level with other
blocks such as PFD, VCO, frequency divider and low pass filter for the system level PLL design. The practical
applications of this includes RF wireless transceivers targeting applications such as WiFi, Bluetooth or 5G can
have better PLL performance. Other than that, SERDES protocol chips that employ a PLL for timing purposes
such as MIPI, SONET, USB, HDMI, PCI Express, Ethernet protocols can have accurate timing circuitry.
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