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Abstract 
Most lung cancers do not cause symptoms until the disease in its later stage. That led the lung 

cancer has a high fatality rate comparing to other cancer types. Many scientists try to use artificial intelligence 
algorithms to produce accurate lung cancer detection. This paper used eXtreme Gradient Boosting 
(XGBoost) models as a base model for its effectiveness. It enhanced its performance by suggesting three 
stages model; feature stage, XGBooste parallel stage, and selection stage. This study used two types of 
gene expression datasets; RNA-sequence and microarray profiles. The results presented the effectiveness 
of the proposed model, especially in dealing with imbalanced datasets, by having 100% each of sensitivity, 

specificity, precision, F1_score, AUC, and accuracy for all of the datasets used. 
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1. Introduction 
Lung cancer is common cancer that causes a higher fatality rate between cancer types. 

The five-year survival rate is about 56% for patients that cancer is still in the lung. While 5% for 
the cases, its cancer spread out of the lung. Only 16% of lung cancer cases are detected early 
[1].  Recognition and prediction the lung cancer in the earliest stage can increase the survival rate 
of the patients. Lung cancer has no symptoms in the early stages [2, 3], so it needs more than 
traditional detection to detect it. Cancer can define as a disease of altered gene expression. The 
gene expression technologies development has become the standard technology for study the 
cells [4-6]. The development of this technology made many researchers applied many studies on 
improving lung cancer prediction by analyzing the changes in gene expression. Some researchers 
study gene expression-based prognostic signatures for lung cancer [3]. Others try to use gene 
expression technology such as microarray and RNA-sequences to develop lung cancer detection 
methods. Many studies used artificial intelligence to detect lung cancer for their power tools. They 
used different methods and had a good result, like Russul A. et al. [7-12]. They proposed different 
studies of new optimization models to improve NSCLC detection using microarray gene 
expression datasets. Also, Hasseeb A. et al.[13-16] have an improvement to multiclass using 
GEP algorithm in lung cancer classification stage to determine the specific therapy and reduce 
the fatality rate. Haigen Hu, et al., [17] proposed detecting and recognizing different life stages of 
bladder cells using two cascaded convolutional neural networks (CNNs). To detect cancer cells 
and their stages. While Matko Š., et al.  [18] they proposed a fully automatic method for detecting 
lung cancer in lung tissue. They used two convolutional neural network CNN architectures (VGG 
and ResNet) for training, and their performance is compared. The results obtained show that the 
CNN-based approach can help pathologists diagnose lung cancer. Also, Shulong Li et al. [19] 
proposed a fusion algorithm that combines handcrafted features into the features learned at the 
output layer of a 3D deep convolutional neural network (CNN). Patra R. [20] analyzed various 
machine learning classifiers techniques to classify lung cancer into benign and malignant.  

Lai, Y., et al. [21] trained clinical and gene expression data with improved deep neural 
network (DNN). It used patients based on microarray data to predict the 5-year survival status of 
NSCLC. The study of  Michael M. A. P. [22] proposed an automatic approach to classifying the 
lung image into a normal case or cancer case by pre-processing the CT lung image to remove 
noise. Then combines the histogram analysis with morphological and extracts the lung regions 
by thresholding operations, while Adeola Ogunleye's study [23] used a clinical database to 



classify the patient if he has chronic kidney disease or not using XGBoost. Azian A., et. al. [24] 
suggested an enhanced cellular neural network (CNN) as a solution for detecting malignant cells 
in real-time using Pap smear images after image processing. Rozlini Mohamed, et. al [25 ] used 
the Bat Algorithm and K-Means techniques for classification performance improvement, which 
they applied on 14 datasets. Results show that BkMDFS outperforms most performance 
measures, and they show that Bat Algorithm has the potential to be one of the discretization 
techniques and feature selection techniques. In a previous study [26], we compare multiple 
current machine learning and found that the XGBoost is the most accurate system in balance and 
imbalance datasets. This study tried to improve the XGBoost by applied a parallel XGBoost 
(PXGB) with different hyperparameters to increase the system variety and decrease the 
overfitting. The PXGB showed more accurate prediction values for detecting cancer and normal 
lung state, especially for imbalanced datasets. 
 
2. XGBoost algorithm. 

XGBoost is a decision-tree-based ensemble machine learning algorithm was developed 
by Tianqi Chen and Carlos Guestrin. They implement machine learning algorithms under the 
Gradient Boosting framework (see figure 1). They introduced their work at SIGKDD conference 
in 2016 [27]. XGBoost provides a parallel tree boosting that quickly and accurately solves many 
data science problems. It offers a range of hyperparameters that give fine-grained control over 
the model training procedure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. XGBoost algorithm 

 
3. Lung cancer Datasets 

The datasets used in this study are microarray and RNA-sequence datasets. The data 
gathered through microarrays represents the gene expression profiles, which show simultaneous 
changes in the expression of many genes in response to a particular condition or treatment. They 
represent the molecular level states of the cell [6]. RNA-sequence datasets. used 
a sequencing technique (next-generation sequencing) to disclose the presence and quantity 
of RNA in a biological sample at a given moment, analyzing the continuously changing 
cellular transcriptome.[28]   

This study applied the proposed model on two microarray datasets and one RNA-
sequence dataset (see Table 1). All datasets were downloaded from the National Center for 
Biotechnology Information site (NCBI). 

https://xgboost.ai/
https://en.wikipedia.org/wiki/Gradient_boosting
https://xgboost.ai/
https://en.wikipedia.org/wiki/DNA_sequencing
https://en.wikipedia.org/wiki/Next-generation_sequencing
https://en.wikipedia.org/wiki/RNA
https://en.wikipedia.org/wiki/Transcriptome
https://en.wikipedia.org/wiki/RNA-Seq#cite_note-2


3.1 Dataset information 

Each dataset used has a different way of extracting the gene expression, the number of 
features, and the number of cases. The first is (GSE30219) dataset representing the gene 
expression by microarray technology. It has 14 normal lung samples and 293 lung cancer 
samples [29]. The second (GSE74706) dataset is also represented by microarray technology.  It 
is expressing data of early-stage NSCLC. It has 18 lung cancer samples and 18 normal lung 
samples. The last dataset (GSE81089) [30] has 218 cases expressed by RNA-sequencing, which 
is called next-generation sequencing [31]; RNA-Seq allows researchers to detect gene fusions 
variants, both known and novel features, and other features without the limitation of prior 
knowledge [32]. It has 199 lung cancer samples with NSCLC type and 19 normal lung samples.  

 
 

Table 1: Dataset's information 

Datasets Type patients Features The Class 
Sample distribution 

Cancer case Normal case 

GSE30219 Microarray 307 54675 Cancer/Normal 293 14 

GSE74706 Microarray 36 34182 Cancer/Normal 18 18 

GSE81089 New Generation 
Sequencing (NGS) 

218 63129 Cancer /Normal 199 19 

3.2 Data pre-processing 

Data pre-processing in machine learning is an essential step in enhancing data quality to 
raise meaningful perceptiveness. It refers to cleaning and organizing the raw data to make it 
suitable for building and training machine learning models. In biological data, it is crucial to clean 
the data to improve the quality of the data for searching and analyzing. To do that, it runs a 
process to detect and remove corrupt or inaccurate records from the database. Each record with 
missing data must be deleted because it is regarded as irrelevant and cause inappropriate 
learning results.  

The XGBoost classification deals with the numeric representation in the decision class. 
In contrast, the classes in the lung cancer datasets are in nominal representation, like normal / 
cancer. Therefore, it must change them to numeric representation (0 /1).   

4. The Parallel_XGBoost (PXGB) 

There is no way to teach one machine learning to fit all kinds of information. In our case, 
the XGBoost succeeded in learning on some datasets with high accuracy but have lower accuracy 
in others. This because of its firm reliance on its hyperparameter setting. This study made 
development on XGBoosts structure to accommodate different types of datasets by connecting 
multiple numbers of XGBoosts on parallel with a variety value of hyperparameters. Then it takes 
the maximum probability for its prediction, as shown in Fig.2. All the XGboosts are working in 
parallel not to cause a delay in learning time. As seen in Fig.2, the proposed methodology has 
three stages: 

Feature selection stage: The benefit of using XGBoost in feature selection is that after 
the boosted trees are constructed, they will retrieve the importance scores for each feature. The 
importance score refers to how useful or valuable each feature was in constructing the model 
boosted decision trees. The more feature is used, the higher its importance score. This 
importance is calculated for each feature in the dataset, allowing features to be ranked and 
compared. 

The importance is calculated for each decision tree by counting each feature split point 
and improving the performance measure, weighted by the number of observations the node is 
responsible for. The attribute importances are then average across all decision trees within the 
model [23].  

In this paper, the importance score threshold setting was (10-6).  Each attribute less than 
this threshold will be neglected. The features of GSE30219,  GSE74706, and GSE81089 datasets 
were (54675), (34182), and (63129), respectively, but after the feature selection stage, it becomes 
(20), (1), and (8)  features.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The proposal learning model (PXGB) 
 

Parallel XGBoost stage: After the feature selection stage, the data will be subset to 70% 
for training and 30% for testing, then entered into each XGBoost simultaneously. In our case, it 
needs to use different types of bio_dataset. This kind of dataset is usually noisy, so it needs the 
model to tune its hyperparameters each time to avoid overfitting or underfitting to handle a wide 
range of datasets. For that reason, It used multi XGBoost models connected in parallel. Each 
XGBoost has its hyperparameters setting different from each other. This study will take six sets 
of XGBoost hyperparameters from the most common range that consider the XGBoost model 
often works well in them. The hyperparameters ranges are; the subsample [0.5 -1], the Max_depth 
[2-7], the learning rate [0.05-0.3], the n_estimators (no. of trees) [5-50], and the last is the 
min_child weight from [1-6]. Their arrangement depends on the most values that not caused 
overfitting but may sometimes cause an underfitting (level one), to the more values that may 
cause overfitting but less likely causing underfitting (level six), see table 2.  At the end of this 
stage, it will have a probability prediction for both classes in each level.  

Selection stage: At this stage, it will take the maximum probability value of all XGBoost 
levels. The result is that the class with maximum probability is chosen as the final class prediction. 

 

Table 2. The setting of each XGBoost hyperparameters in the PXGB 

 

 
 
 
 
 
 
 
 
 

 
5. The results 
The PXGB compare its result with original XGBoost, 2016 [27], support vector machine (SVM), 
2005 [33] deep forest (gcforest), 2017 [34], KNN ( k-nearest neighbors algorithm) and Naive 
Bayes.  
 

 

XGBoost   sequence 

in the parallel stage 

 XGBoost hyperparameters 

subsamble Max_depth Learning rate n_estimators min_child_weight 

First level 0.5 2 0.3 5 6 

Second level 0.6 3 0.25 10 5 

Third level 0.7 4 0.2 20 4 

Fourth level 0.8 5 0.15 30 3 

Fifth  level 0.9 6 0.1 40 2 

sixth  level 1 7 0.05 50 1 



5.1 XGBoost hyperparameters setting 
The PXGB sets the hyperparameters of all XGBoosts as shown in Table 2, and each of 

the original XGBoost, SVM, gcforest, KNN, and Naive Bayes have a particular setting, as shown 
in Table 3. 

 
Table 3. Parameters setting of representative models 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Comparison of different Classifiers 
Different results were obtained after applying the PXGB model and other machine 

learning models to the lung cancer datasets. Tables 4 illustrate each model's sensitivity, 
specificity, precision, F1_score, AUC, accuracy, and learning time metrics. Furthermore, in figures 
3, 4, and 5, they showed the ROC drawings and the AUC values of each machine learning model.  

 
Table 4 Comparison results of lung cancer detection for All dataset 

 
5.3 Analyzing metrics 
 
From table 4, it is seen that all PXGB metrics have excellent values when applying to all datasets. 
It succeeded in detecting all cases (cancer and normal cases) in all datasets. In contrast, XGBoost 
successfully predicts all cases only in GSE81089 dataset because it has only one set of 
hyperparameters, while XGBoost has a range of hyperparameters that let it build multiple 
XGBoost structures in the training stage. PXGB gives the flexibility to deal with different datasets 
and allows all the XGBoost structures to contribute to the class detection in the test stage and 
then choose the best prediction by selecting the class with the maximum prediction value. 
The PXGB improved the performance of the XGBoost. It has become more powerful and reliable 
for a variant type of dataset without changing its hyperparameters. Despite the Nave Byse has 

XGBoost SVM gcForest KNN Naive Bayes 

Parameter value Parameter

s 

value Parameter value Parameter value Parameter value 

max_depth 6 kernel RBF max_depth 6 n_neighbor 2 var_smoothing 1e-9 

n_estimators 

(Trees) 
2 gamma 1 

no. of trees in  

each forest 

 

 

stages= 500 

500 weights uniform sample_weight None 

Learning rate 0.3 tolerance 0.001 Wind. size 500 algorithm auto   

min_child_weigh

t 
1 C 1 Step 100 leaf_size 1   

Subsample 0.7   Min_samples_split 0.7     

GSE81089 dataset 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 

PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:03 
XGBoost 1.0 1.0 1.0 1.0 1.0 1.0 00:04 
SVM 0.2 0.83 0.5 0.29 0.52 0.55 00:01 
gcForest 1.0 0 0.45 0.63 0.50 0.45 00:36 
KNN 0.8 1.0 1.0 0.89 0.90 0.91 00:01 
Naive Bayes 0.6 0.67 0.6 0.6 0.63 0.64 00:01 

GSE30219 dataset 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 

PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:13 
XGBoost 1.0 0.95 1.0 0.99 0.99 0.98 00:24 
SVM 1.0 0.5 0.95 0.98 0.75 0.95 00:05 
gcForest 0.98 0.83 0.98 0.98 0.91 0.97 03:37 
KNN 0.95 0.5 0.95 0.95 0.72 0.91 00:29 
Naive Bayes 1.0 0.17 0.92 0.96 0.58 0.92 00:02 

GSE74706 dataset 

Classifier Name Sensitivity Specificity Precision F1_score AUC Accuracy Time (min.) 

PXGBS 1.0 1.0 1.0 1.0 1.0 1.0 00:13 

XGBoost 0.99 1.0 0.99 1.0 0.99 0.99 00:17 

SVM 1.0 0 0.96 0.98 0.5 0.96 00:07 

gcForest 0.98 0.75 0.98 0.98 0.87 0.97 03:26 

KNN 0.98 1.0 1.0 0.99 0.99 0.99 00:12 

Naive Bayes 0.99 1.0 1.0 0.99 0.99 0.99 00:02 



the shortest learning time in most datasets, the PXGB has an accepted learning time ranged from 
3 to 13 seconds. It is even shorter than the original XGBoost ranging from 4 to 23 seconds 
because of the selection feature process, and the multiple XGBoost are worked in parallel, 
decreasing the system overhead.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
6. Conclusions 

This study suggested flexible machine learning for lung cancer detection using multiple 
XGBoost classifications connected in parallel. Each XGBoost has different hyperparameter 
ranges from the most values that from learning relations might be led to overfitting to the values 
that might cause the underfitting, to obtain various tree buildings. This variety gives the PXGB 
flexibility and reliability when applied to different datasets. Also, using the XGBoost algorithm as 
a feature selection to the PXGB model improved its accuracy and sped up the learning time. 

The results showed that the PXGB model improved lung cancer detection performance. 
This improvement is better than the original XGBoost, and other comparative machine learning, 
especially for imbalanced datasets and within an acceptable time. 

 
 

Figure 3. The ROC curves and AUC values for all 
comparative models on GSE81089 dataset. 

Figure 5. The ROC curves and AUC values for all comparative models on 
GSE74706 dataset 

 

Figure 4. The ROC curves and AUC values for all 
comparative models on GSE30219 dataset. 
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