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Abstract 

In this paper, we define the 𝜔-𝑄-fuzzy subring and discussed various fundamental aspects of 

𝜔-𝑄-fuzzy subrings. We introduce the concept of 𝜔-𝑄-level subset of this new fuzzy set and 

prove that 𝜔-𝑄-level subset of 𝜔-𝑄-fuzzy subring form a ring. We define 𝜔-𝑄-fuzzy ideal and 

show that set of all 𝜔-𝑄-fuzzy cosets form a ring. Moreover, we investigate the properties of 

homomorphic image of 𝜔-𝑄-fuzzy subring. 
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1. Introduction 

The concept of fuzzy sets was introduced by Zadeh [17] in 1965. Rosenfeld [14] commenced 

the idea of fuzzy subgroups in 1971. The fuzzy subrings were initiated by Liu [8] Dixit et al. 

[5] described the notion of level subgroup in 1990. Gupta [6] defined many classical 𝑡 -

operators in 1991. Solairaju and Nagarajan [15] explored a new structure and construction of 

𝑄-fuzzy groups in 2009. Muthuraj et al. [10] proposed the study of lower level subsets of anti-

QFS in 2010 .  The concept of 𝑄 -fuzzy normal subgroups and 𝑄 -fuzzy normalizer were 

established by Priya et al. [11] in 2013. Sither Selvam et al. [12] used the Biswas [ 4] work to 

modify the idea of anti-QFNS in 2014. Alsarahead and Ahmed [1 − 3]  commenced new 

concept of complex fuzzy subring, complex fuzzy subgroup and complex fuzzy soft subgroups 

in 2017. The 𝑄-fuzzy subgroup in algebra was discussed in [7]. Rasuli [13] discussed 𝑄-

fuzzy subring with respect to 𝑡-norm in 2018. More development about fuzzy subgroup may 

be viewed in [9,16 ]. This paper is organized as the section 2 contains the elementary definition 
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of 𝑄-fuzzy subrings and related results which are thoroughly crucial to understand the novelty 

of this article. In section 3, we define the 𝜔-𝑄-fuzzy subring and prove that the level subset of 

𝜔-𝑄-fuzzy subrings is a subring. We also define 𝜔-𝑄-fuzzy ideal and discuss its properties. In 

section 5, we use the classical ring homomorphism to investigate the behavior of homomorphic 

image (inverse-image) of 𝜔-𝑄-fuzzy subring.  

2. Preliminaries 

We recall first the elementary notion of fuzzy sets which play a key role for our further analysis. 

Definition (2.1) [17]: A fuzzy set  𝐴 of a nonempty set 𝑀 is a function  

 𝐴 ∶ 𝑃 → [0, 1]. 

Definition (2.2) [12]: Let 𝐴 be fuzzy subset of a ring 𝑅. Then 𝐴 is said to a fuzzy subring if 

i. 𝐴(𝑢 − 𝑣) ≥ min{𝐴(𝑢), 𝐴(𝑣)} 

ii. 𝐴(𝑢𝑣) ≥ min{𝐴(𝑢), 𝐴(𝑣)}, for all 𝑢, 𝑣 ∈ 𝑅. 

Definition (2.3) [15]: Let 𝑀 and 𝑄 be two nonempty sets. A 𝑄-fuzzy subset 𝐴 of set 𝑀 is a 

function 𝐴: 𝑋 × 𝑄 → [0,1]    for all 𝑢, 𝑣 ∈ 𝑀 and 𝑞 ∈ 𝑄. 

Definition (2.4) [13]:  A function 𝐴 ∶ 𝑅 × 𝑄 ⟶ [0,1] is a QFSRR of a ring 𝑅 if 

i. 𝐴(𝑢 − 𝑣, 𝑞) ≥ min{𝐴(𝑢, 𝑞), 𝐴(𝑣, 𝑞)} 

ii. 𝐴(𝑢𝑣, 𝑞) ≥ min{𝐴(𝑢, 𝑞), 𝐴(𝑣, 𝑞)}, for all 𝑢, 𝑣 ∈ 𝑅 and 𝑞 ∈ 𝑄.  

Definition (2.5) [13]: Let the mapping 𝑓: 𝑅1 → 𝑅2 be a homomorphism. Let 𝐴 and 𝐵 be 𝜔-

QFSRs of 𝑅1  and 𝑅2  respectively, then  𝑓(𝐴) and 𝑓−1(𝐵)  are image of 𝐴 and the inverse 

image of 𝐵 respectively, defined as 

i. 𝑓(𝐴)(𝑣, 𝑞) = {
sup{𝐴(𝑢, 𝑞): 𝑢 ∈ 𝑓−1(𝑣)},   if  𝑓−1(𝑣) ≠ ∅

0,                                             if  𝑓−1(𝑣) = ∅
, for every 𝑣 ∈ 𝑅2and 𝑞 ∈ 𝑄 

ii. 𝑓−1(𝐵)(𝑢, 𝑞) = 𝐵(𝑓(𝑢), 𝑞), for every 𝑢 ∈ 𝑅1and 𝑞 ∈ 𝑄 

Definition (2.6) [6]: Let 𝑡𝑝: [0,1] × [0,1] → [0,1] be the algebraic product 𝑡-norm on [0,1] and 

is described as 𝑡𝑝{𝑎, 𝑏} = 𝑎𝑏, 0 ≤ 𝑎 ≤ 1, 0 ≤ 𝑏 ≤ 1  

3. Properties of 𝝎-𝑸-fuzzy subrings 

Definition (3.1): Let 𝑀 and 𝑄 be any two nonempty sets and  𝐴 be a 𝑄-fuzzy subset of a set 𝑃, 

any 𝜔 ∈ [0,1]. Then fuzzy set 𝐴𝜔 of 𝑀 is said to be  𝜔-𝑄-fuzzy subset of 𝑀 (w.r.t 𝑄-fuzzy set 

𝐴) and defined by 

𝐴𝜔(𝑚, 𝑞) = 𝑡𝑝{𝐴(𝑚, 𝑞), 𝜔}, for all 𝑚 ∈ 𝑀 and 𝑞 ∈ 𝑄 

Remark (3.2): Clearly, 𝐴1(𝑚, 𝑞) = 𝐴(𝑚, 𝑞) and  𝐴0(𝑚, 𝑞) = 0. 
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Remark (3.3): If 𝐴 and 𝐵 be two 𝑄-fuzzy sets of 𝑀. Then (𝐴 ∩ 𝐵)𝜔 = 𝐴𝜔 ∩ 𝐵𝜔 . 

Definition (3.4): A 𝑄-fuzzy subset of a ring 𝑅 is called 𝜔-QFSR, and 𝜔 ∈ [0,1], if 

i 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)},   for all 𝑚, 𝑛 ∈ 𝑅 and 𝑞 ∈ 𝑄. 

ii 𝐴𝜔(𝑚𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)},   for all 𝑚, 𝑛 ∈ 𝑅 and 𝑞 ∈ 𝑄 

Theorem (3.5): If 𝐴 is a 𝜔-QFSR of a ring 𝑅, then  

𝐴𝜔(𝑚, 𝑞) ≤ 𝐴𝜔(0, 𝑞), for all 𝑚 ∈ 𝑅 and 𝑞 ∈ 𝑄 where 0 is the additive identity of 𝑅. 

Proof: Consider𝐴𝜔(0, 𝑞) = 𝐴𝜔(𝑚 − 𝑚, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑚−1, 𝑞)} 

= min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑚, 𝑞)} = 𝐴𝜔(𝑚, 𝑞)  

Hence,  𝐴𝜔(0, 𝑞) ≥ 𝐴𝜔(𝑚, 𝑞), for all 𝑚 ∈ 𝑅 

Theorem (3.6): If 𝐴 is QFSR of a ring 𝐻, then 𝐴 is an 𝜔-QFSR of 𝑅.  

Proof: Assume that 𝐴 is a QFSR of a ring 𝑅 and ∀ 𝑎, 𝑏 ∈ 𝑅 and 𝑞 ∈ 𝑄. 

Assume that,  𝐴𝜔(𝑎 − 𝑏, 𝑞) = 𝑡𝑝{𝐴(𝑎 − 𝑏, 𝑞), 𝜇} ≥ 𝑡𝑝{min{𝐴(𝑎, 𝑞), 𝐴(𝑏, 𝑞)}, 𝜔}  

= min {𝑡𝑝{𝐴(𝑎, 𝑞), 𝜔}, 𝑡𝑝{𝐴(𝑏, 𝑞), 𝜔}} = min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)} 

𝐴𝜔(𝑎 − 𝑏, 𝑞) ≥ min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)}  

Further 𝐴𝜔(𝑎𝑏, 𝑞) = 𝑡𝑝{𝐴(𝑎𝑏, 𝑞), 𝜇} ≥ 𝑡𝑝{min{𝐴(𝑎, 𝑞), 𝐴(𝑏, 𝑞)}, 𝜔}  

= min {𝑡𝑝{𝐴(𝑎, 𝑞), 𝜔}, 𝑡𝑝{𝐴(𝑏, 𝑞), 𝜔}} = min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)} 

𝐴𝜔(𝑎𝑏, 𝑞) ≥ min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)}   

Consequently, 𝐴 is 𝜔-QFSR of 𝑅. In general,  the converse may not be true.  

Note 3.7:  we take 𝑄 = {𝑞} in all the examples 

Example (3.8): Let 𝑅 = {0,1,2,3}, be a ring and 𝑄 = {𝑞}. Let the 𝑄-fuzzy set 𝐴 of 𝑅 described 

by 

𝐴(𝑎, 𝑞) = {
0.3, if 𝑎 = 0        
0.5, if 𝑎 = 1 or 3
0.4, if 𝑎 =  2     

 

Take 𝜔 = 0 then  

𝐴𝜔(𝑎, 𝑞) = 𝑡𝑝{𝐴(𝑎, 𝑞), 𝜔} = 𝑡𝑝{𝐴(𝑎, 𝑞), 0} = 0, for all 𝑎 ∈ 𝑅  

⟹   𝐴𝜔(𝑎 − 𝑏, 𝑞) ≥ min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)} 

Further, we have   𝐴𝜔(𝑎𝑏, 𝑞) ≥ min{𝐴𝜔(𝑎, 𝑞), 𝐴𝜔(𝑏, 𝑞)} 

Consequently 𝐴 is 𝜔-QFSR of 𝑅 and 𝐴 is not QFSR of 𝑅.  

Definition 3.9: Let 𝐴 be 𝜔-Q-fuzzy set of universe set 𝑀. For 𝑡, 𝜔 ∈ [0,1] the level subset 

𝐴𝑡
𝜔 of 𝜔-𝑄-fuzzy set is given by 

𝐴𝑡
𝜔 = {𝑚 ∈ 𝑀: 𝐴𝜔(𝑚, 𝑞) ≥ 𝑡}. 
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Theorem (3.10): Let 𝐴 is 𝜔-𝑄-fuzzy subring of 𝑅 then 𝐴𝑡
𝜔  is subring of 𝑅 for all 𝑡 ≤ 𝐴(𝑒, 𝑞). 

Proof: It is quite obvious that 𝐴𝜔 is non-empty. Since 𝐴 be 𝜔-𝑄-fuzzy subring of a ring 𝑅, 

which implies that 𝐴𝜔(𝑚, 𝑞) ≤ 𝐴𝜔(𝑒, 𝑞), for all 𝑚 ∈ 𝑅  and 𝑞 ∈ 𝑄.  Let 𝑚, 𝑛 ∈ 𝐴𝑡
𝜔  then 

𝐴𝜔(𝑚, 𝑞) ≥  𝑡 𝑎 𝐴𝜔(𝑛, 𝑞) ≥ 𝑡.  

Now 

 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} ≥ min{𝑡, 𝑡} = 𝑡, 

𝐴𝜔(𝑚𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} ≥ min{𝑡, 𝑡} = 𝑡  

This implies that     𝑚 − 𝑛, 𝑚𝑛 ∈ 𝐴𝑡
𝜔 . Hence, 𝐴𝑡

𝜔 is subring of 𝑅. 

Definition 3.11: Let 𝐴 be a 𝑄-fuzzy subset of a ring 𝑅 and 𝜔 ∈ [0,1]. Then 𝐴𝜔 is 𝜔-𝑄-fuzzy 

left ideal (𝜔-QFLI) of 𝑅 if 

i 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} 

ii 𝐴𝜔(𝑚𝑛, 𝑞) ≥ 𝐴𝜔(𝑛, 𝑞), for all 𝑚, 𝑛 ∈ 𝑅 𝑎𝑛𝑑 𝑞 ∈ 𝑄 

Definition 3.12: Let 𝐴 be a 𝑄-fuzzy subset of a ring 𝑅 and 𝜔 ∈ [0,1]. Then 𝐴𝜔 is 𝜔-𝑄-fuzzy 

right ideal (𝜔-QFRI) of 𝑅 if 

i. 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} 

ii. 𝐴𝜔(𝑚𝑛, 𝑞) ≥ 𝐴𝜔(𝑚, 𝑞), for all 𝑚, 𝑛 ∈ 𝑅 𝑎𝑛𝑑 𝑞 ∈ 𝑄 

Definition 3.13: Let 𝐴 be a 𝑄-fuzzy subset of a ring 𝑅 and 𝜔 ∈ [0,1]. Then 𝐴𝜔 is 𝜔-QFI of 𝑅 

if 

i. 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} 

ii. 𝐴𝜔(𝑚𝑛, 𝑞) ≥ max{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} , for all 𝑚, 𝑛 ∈ 𝑅 𝑎𝑛𝑑 𝑞 ∈ 𝑄 

Definition 3.14: Let 𝐴 be a 𝜔-QFSR of a ring 𝑅 and 𝜔 ∈ [0,1]. For any 𝑚 ∈ 𝑅 and 𝑞 ∈ 𝑄, 

The 𝜔-𝑄-fuzzy coset of 𝐴 in 𝑅 is represented by 𝑚 + 𝐴𝜔 as defined as  

(𝑚 + 𝐴𝜔)(ℎ, 𝑞) = 𝑡𝑝{𝐴(ℎ − 𝑚, 𝑞), 𝜔} = 𝐴𝜔(ℎ − 𝑚), for all 𝑚, ℎ ∈ 𝑅 and 𝑞 ∈ 𝑄  

Theorem 3.15: Let  𝐴 be ω-QFI of ring 𝑅. Then the set 

 𝐴0
𝜔 = { 𝑚 ∈ 𝑅: 𝐴𝜔(𝑚, 𝑞) = 𝐴𝜔(0, 𝑞)} is an ideal of ring 𝑅. 

Proof: Obviously 𝐴0
𝜔 ≠ 𝜑  because  0 ∈ 𝑅. Let 𝑚, 𝑛 ∈ 𝐴0

𝜔   be any elements.  

Consider 

𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ min{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} = min{𝐴𝜔(0, 𝑞), 𝐴𝜔(0, 𝑞)} 

Implies that 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≥ 𝐴𝜔(0, 𝑞). But 𝐴𝜔(𝑚 − 𝑛, 𝑞) ≤ 𝐴𝜔(0, 𝑞) 

Therefore, 𝐴𝜔(𝑚 − 𝑛, 𝑞) =  𝐴𝜔(0) 

Implies that 𝑚 − 𝑛 ∈ 𝐴0
𝜔. 

Further, let 𝑚 ∈ 𝐴(𝛼,𝛽)
0  and 𝑛 ∈ 𝑅 . Consider  

𝐴𝜔(𝑚𝑛, 𝑞) ≥ max{𝐴𝜔(𝑚, 𝑞), 𝐴𝜔(𝑛, 𝑞)} = max{𝐴𝜔(0, 𝑞), 𝐴𝜔(𝑛, 𝑞)}, 
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Implies that 𝐴𝜔(𝑚𝑛, 𝑞) ≥ 𝐴𝜔(0, 𝑞). But 𝐴𝜔(𝑚𝑛, 𝑞) ≤ 𝐴𝜔(0, 𝑞) 

Therefore, 𝐴𝜔(𝑚𝑛, 𝑞) = 𝐴𝜔(0, 𝑞). 

Similarly, 𝐴𝜔(𝑛𝑚, 𝑞) =  𝐴𝜔(0, 𝑞) 

Implies that 𝑚𝑛, 𝑛𝑚 ∈ 𝐴0
𝜔. 

Implies that  𝐴0
𝜔 is an ideal. 

 

Theorem 3.16: Let 𝐴0
𝜔 be an 𝜔-QFI of ring 𝑅, 𝑚, 𝑛 ∈ 𝑅 𝑎𝑛𝑑 𝑞 ∈ 𝑄. Then  

𝑚 + 𝐴𝜔 = 𝑛 + 𝐴𝜔     if and if only  𝑚 − 𝑛 ∈ 𝐴0
𝜔. 

Proof:   For any 𝑚, 𝑛 ∈ 𝑆, we have 𝑚 + 𝐴𝜔 = 𝑛 + 𝐴𝜔. 

Consider, 

 𝐴𝜔(𝑚 − 𝑛, 𝑞) = (𝑛 + 𝐴𝜔)(𝑚, 𝑞) = (𝑚 + 𝐴𝜔)(𝑚, 𝑞) = 𝐴𝜔(0, 𝑞)  

Therefore, 𝑚 − 𝑛 ∈ 𝐴0
𝜔. 

Conversely, let 𝑚 − 𝑛 ∈ 𝐴0
𝜔 

Implies that 𝐴𝜔(𝑚 − 𝑛, 𝑞) = 𝐴𝜔(0, 𝑞) 

Consider, (𝑚 + 𝐴𝜔)(ℎ, 𝑞) = 𝐴𝜔(ℎ − 𝑚, 𝑞) = 𝐴𝜔((ℎ − 𝑛) − (𝑚 − 𝑛), 𝑞) 

≥ min{𝐴𝜔((ℎ − 𝑛), 𝑞), 𝐴𝜔((𝑚 − 𝑛), 𝑞)}  

= min{𝐴𝜔((ℎ − 𝑛), 𝑞), 𝐴𝜔(0, 𝑞)} = 𝐴𝜔((ℎ − 𝑛), 𝑞) = (𝑛 + 𝐴𝜔)(ℎ, 𝑞)  

Interchange the role of 𝑝 and 𝑞 we get (𝑛 + 𝐴𝜔)(ℎ, 𝑞) ≥ (𝑚 + 𝐴𝜔)(ℎ, 𝑞) 

Therefore,  (𝑚 + 𝐴𝜔)(ℎ, 𝑞) = (𝑛 + 𝐴𝜔)(ℎ, 𝑞), for all ℎ ∈ 𝑅 

Definition (3.17): Let 𝐴 be a 𝜔-QFI of a ring 𝑅. The set of all 𝜔-𝑄-fuzzy cosets of 𝐴 denoted 

by 𝑅 𝐴𝜔⁄  form a ring with respect to binary operation * defined by  

                     (𝑚 + 𝐴𝜔) + (𝑛 + 𝐴𝜔) = (𝑚 + 𝑛) + 𝐴𝜔 , 𝑤ℎ𝑒𝑟𝑒 𝑚 + 𝐴𝜔 , 𝑛 + 𝐴𝜔 ∈

𝑅
𝐴𝜔⁄ , 𝑚, 𝑛 ∈ 𝑅.                                                 

                         (𝑚 + 𝐴𝜔) ∗ (𝑛 + 𝐴𝜔) = (𝑚 ∗ 𝑛) + 𝐴𝜔 , 𝑤ℎ𝑒𝑟𝑒 𝑚 + 𝐴𝜔 , 𝑛 + 𝐴𝜔 ∈

𝑅
𝐴𝜔⁄ , 𝑚, 𝑛 ∈ 𝑅. The ring 𝑅 𝐴𝜔⁄  is called the factor ring of 𝑅 with respect to 𝜔-QFI 𝐴𝜔. 

Theorem (3.18): The set 𝑅 𝐴𝜔⁄  forms a ring with respect to the above stated binary operation.  

Proof: Let 𝑚1 + 𝐴𝜔 = 𝑚2 + 𝐴𝜔  𝑎𝑛𝑑 𝑛1 + 𝐴𝜔 = 𝑛2 + 𝐴𝜔  for some 𝑚1, 𝑚2, 𝑛1, 𝑛2 ∈  𝑅.                                     

Let 𝑔 ∈ 𝑅 be any element of 𝑅 and 𝑞 ∈ 𝑄. 

(𝑚2 + 𝑛2 + 𝐴𝜔)(𝑔, 𝑞) = 𝐴𝜔(𝑔 − (𝑚2 + 𝑛2), 𝑞) 

= 𝐴𝜔(𝑔 − 𝑚2 − 𝑛2), 𝑞) = 𝑛2 + 𝐴𝜔(𝑔 − 𝑚2), 𝑞) = 𝑛1 + 𝐴𝜔(𝑔 − 𝑚2), 𝑞) 

= 𝐴𝜔(𝑔 − 𝑚2 − 𝑛1), 𝑞) = 𝑚2 + 𝐴𝜔(𝑔 − 𝑛1), 𝑞) = 𝑚1 + 𝐴𝜔(𝑔 − 𝑛1), 𝑞) 

= 𝐴𝜔(𝑔 − 𝑚1 − 𝑛1), 𝑞) = 𝐴𝜔(𝑔 − (𝑚1 + 𝑛1), 𝑞) = (𝑚1 + 𝑛1 + 𝐴𝜔)(𝑔, 𝑞) 
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Moreover,  

(𝑚2𝑛2 + 𝐴𝜔)(𝑔, 𝑞) = 𝐴𝜔(𝑔 − 𝑚1𝑛1 − (𝑚2𝑛2 − 𝑚1𝑛1), 𝑞) 

≥ min{𝐴𝜔(𝑔 − 𝑚1𝑛1), 𝐴𝜔((𝑚2𝑛2 − 𝑚1𝑛1), 𝑞)} 

But we have, 𝐴𝜔((𝑚2𝑛2 − 𝑚1𝑛1), 𝑞) = 𝐴𝜔((𝑚1𝑛1 − 𝑚2𝑛1 + 𝑚2𝑛1 − 𝑚2𝑛2), 𝑞) 

= 𝐴𝜔((𝑚1 − 𝑚2)𝑛1 + 𝑚2(𝑛1 − 𝑛2), 𝑞) ≥ min{𝐴𝜔(𝑚1 − 𝑚2)𝑛1, 𝑞), 𝐴𝜔(𝑚2(𝑛1 − 𝑛2), 𝑞)} 

= min{𝐴𝜔((𝑚1 − 𝑚2), 𝑞), 𝐴𝜔((𝑛1 − 𝑛2), 𝑞)} 

= min{𝐴𝜔(0, 𝑞), 𝐴𝜔(0, 𝑞)} 

, 𝐴𝜔((𝑚2𝑛2 − 𝑚1𝑛1), 𝑞) ≥ 𝐴𝜔(0, 𝑞), 

(𝑚2𝑛2 + 𝐴𝜔)(𝑔, 𝑞) ≥ 𝐴𝜔(𝑔 − 𝑚1𝑛1), 𝑞) 

= (𝑚1𝑛1 + 𝐴𝜔)(𝑔, 𝑞) 

Similarly, we can prove that (𝑚2𝑛2 + 𝐴𝜔)(𝑔, 𝑞) ≤ (𝑚1𝑛1 + 𝐴𝜔)(𝑔, 𝑞) 

Consequently,  (𝑚2𝑛2 + 𝐴𝜔)(𝑔, 𝑞) = (𝑚1𝑛1 + 𝐴𝜔)(𝑔, 𝑞). 

Therefore ∗ is well defined. Now we prove that the following axioms of ring, for any 𝑚, 𝑛 ∈

𝑅. 

1. (𝑚 + 𝐴𝜔) + (𝑛 + 𝐴𝜔) = 𝑚 + 𝑛 + 𝐴𝜔 

2. (𝑚 + 𝐴𝜔) + [(𝑛 + 𝐴𝜔) + (𝑟 + 𝐴𝜔)] = 𝑚 + 𝐴𝜔 + [𝑛 + 𝑟 + 𝐴𝜔] = (𝑚 + 𝑛) + 𝑟 + 𝐴𝜔 =

[𝑚 + 𝑛 + 𝐴𝜔] + 𝑟 + 𝐴𝜔 = [(𝑚 + 𝐴𝜔) + (𝑛 + 𝐴𝜔)] + (𝑟 + 𝐴𝜔) 

3. (𝑚 + 𝐴𝜔) + (𝑛 + 𝐴𝜔) = 𝑚 + 𝑛 + 𝐴𝜔 = 𝑛 + 𝑚 + 𝐴𝜔 = (𝑛 + 𝐴𝜔) + (𝑚 + 𝐴𝜔) 

4. (0 + 𝐴𝜔) + (𝑛 + 𝐴𝜔) = (𝑛 + 𝐴𝜔) 

5. (𝑚 + 𝐴𝜔) + (−𝑚 + 𝐴𝜔) = 𝐴𝜔 

6. (𝑚 + 𝐴𝜔)(𝑛 + 𝐴𝜔) = 𝑚𝑛 + 𝐴𝜔 

7. (𝑚 + 𝐴𝜔)[(𝑛 + 𝐴𝜔)(𝑟 + 𝐴𝜔)] = 𝑚 + 𝐴𝜔 + [𝑛𝑟 + 𝐴𝜔] = 𝑚𝑛𝑟 + 𝐴𝜔 = [𝑚𝑛 + 𝐴𝜔] +

𝑟 + 𝐴𝜔 = [(𝑚 + 𝐴𝜔)(𝑛 + 𝐴𝜔)](𝑟 + 𝐴𝜔) 

8. (𝑚 + 𝐴𝜔)[(𝑛 + 𝐴𝜔) + (𝑟 + 𝐴𝜔)] = (𝑚 + 𝐴𝜔)[(𝑛 + 𝑟) + 𝐴𝜔] = 𝑚(𝑛 + 𝑟) + 𝐴𝜔 =

(𝑚𝑛 + 𝑚𝑟) + 𝐴𝜔 = (𝑚𝑛 + 𝐴𝜔) + (𝑚𝑟 + 𝐴𝜔) = [(𝑚 + 𝐴𝜔)(𝑛 + 𝐴𝜔) + (𝑚 + 𝐴𝜔)(𝑟 +

𝐴𝜔)] 

Consequently, (𝑅
𝐴𝜔⁄ , +,∗) is a ring. 

4. Homomorphism of 𝝎-𝑸-fuzzy subrings  

In this section, we investigate the behavior of homomorphic image and inverse image of 𝜔-

QFSR.  



7 

 

Lemma 4.1: Let 𝑓: 𝑀 → 𝑁  be a mapping and 𝐴  and 𝐵  be two fuzzy subsets of 𝑀  and 𝑁 

respectively, then  

i. 𝑓−1(𝐵𝜔)(𝑚, 𝑞) = (𝑓−1(𝐵))
𝜔

(𝑚, 𝑞), for all 𝑚 ∈ 𝑀 and 𝑞 ∈ 𝑄  

ii. 𝑓(𝐴𝜔)(𝑛, 𝑞) = (𝑓(𝐴))
𝜔

(𝑛, 𝑞), for all 𝑛 ∈ 𝑁 and 𝑞 ∈ 𝑄 

Proof: (i) 𝑓−1( 𝐵𝜔)(𝑚) = 𝐵𝜔(𝑓(𝑚)) = 𝑡𝑝{𝐵(𝑓(𝑚)), ω}  = 𝑡𝑝{𝑓−1(𝐵)(𝑚), 𝜔} 

𝑓−1( 𝐵𝜔)(𝑚)  = (𝑓−1(𝐵))
𝜔

(𝑚), for all 𝑚 ∈ 𝑀 

(ii)  𝑓(𝐴𝜔
)(𝑛, 𝑞) = sup{𝐴𝜔(𝑚, 𝑞): 𝑓(𝑚) = 𝑦} = sup{𝑡𝑝{𝐴(𝑚, 𝑞), ω}: 𝑓(𝑚) = 𝑛} 

= 𝑡𝑝 {sup{{𝐴(𝑚, 𝑞): 𝑓(𝑚) = 𝑛}, 𝜔}} = 𝑡𝑝{𝑓(𝐴)(𝑛, 𝑞), 𝜔} = (𝑓(𝐴))
𝜔

(𝑛, 𝑞), for all 𝑛 ∈ 𝑁 

Hence,   𝑓(𝐴𝜔)(𝑛, 𝑞) = (𝑓(𝐴))
𝜔

(𝑛, 𝑞) 

Theorem 4.2: Let𝑓 ∶ 𝑅1 ⟶ 𝑅2 be a homomorphism from a ring 𝑅1 to a ring 𝑅2 and 𝐴 be a 𝜔-

QFSR of ring 𝑅1 . Then 𝑓(𝐴) is a 𝜔-QFSR of ring 𝑅2. 

Proof: Let 𝐴 be a 𝜔-QFSR of ring 𝑅1. Let 𝑛1, 𝑛2 ∈  𝑅2 be any element. Then there exists 

unique elements 𝑚1, 𝑚2 ∈ 𝑅1 such that 𝑓(𝑚1) = 𝑛1 and 𝑓(𝑚2) = 𝑛2 and for 𝑞 ∈ 𝑄. 

Consider,  

(𝑓(𝐴))
𝜔

(𝑛1 − 𝑛2, 𝑞) = 𝑡𝑝{𝑓(𝐴)(𝑛1 − 𝑛2, 𝑞), 𝜔} = 𝑡𝑝{𝑓(𝐴)(𝑓(𝑚1) − 𝑓(𝑚2), 𝑞), 𝜔}  

= 𝑡𝑝{𝑓(𝐴)(𝑓(𝑚1 − 𝑚2), 𝑞), 𝜔} = 𝑡𝑝{𝐴(𝑚1 − 𝑚2, 𝑞), 𝜔 } = 𝐴𝜔(𝑚1 − 𝑚2, 𝑞) 

≥ min{𝐴𝜔(𝑚1, 𝑞), 𝐴𝜔(𝑚2, 𝑞)}, for all 𝑚1, 𝑚2 ∈ 𝐻1such that 𝑓(𝑚1) = 𝑛1 and 𝑓(𝑚2) = 𝑛2} 

≥ min{sup{𝐴𝜔(𝑚1, 𝑞)  ∶ 𝑓(𝑚1) = 𝑛1}, sup {𝐴𝜔  (𝑚2, 𝑞)  ∶ 𝑓(𝑚2) = 𝑛2}} 

= min{𝑓(𝐴𝜔)(𝑛1, 𝑞), 𝑓(𝐴𝜔)(𝑛2, 𝑞)} = min{(𝑓(𝐴))
𝜔

(𝑛1, 𝑞), (𝑓(𝐴))
𝜔

(𝑛2, 𝑞)} 

Thus, (𝑓(𝐴))
𝜔

(𝑛1𝑛2, 𝑞) ≥ min{(𝑓(𝐴))
𝜔

(𝑛1, 𝑞)(𝑓(𝐴))
𝜔

(𝑛2, 𝑞)}. 

Further, (𝑓(𝐴))
𝜔

(𝑛1𝑛2, 𝑞) = 𝑡𝑝{𝑓(𝐴)(𝑛1𝑛2, 𝑞), 𝜔} = 𝑡𝑝{𝑓(𝐴)(𝑓(𝑚1)𝑓(𝑚2), 𝑞), 𝜔} 

= 𝑡𝑝{𝑓(𝐴)(𝑓(𝑚1𝑚2), 𝑞), 𝜔} = 𝑡𝑝{𝐴(𝑚1𝑚2, 𝑞), 𝜔 } = 𝐴𝜔(𝑚1𝑚2, 𝑞) 

≥ min{𝐴𝜔(𝑚1, 𝑞), 𝐴𝜔(𝑚2, 𝑞)}, for all 𝑚1, 𝑚2 ∈ 𝐻1such that 𝑓(𝑚1) = 𝑛1 and 𝑓(𝑚2) = 𝑛2} 

≥ min{sup{𝐴𝜔(𝑚1, 𝑞)  ∶ 𝑓(𝑚1) = 𝑛1}, sup {𝐴𝜔  (𝑚2, 𝑞)  ∶ 𝑓(𝑚2) = 𝑛2}} 

= min{𝑓(𝐴𝜔)(𝑛1, 𝑞), 𝑓(𝐴𝜔)(𝑛2, 𝑞)} = min{(𝑓(𝐴))
𝜔

(𝑛1, 𝑞), (𝑓(𝐴))
𝜔

(𝑛2, 𝑞)} 

Thus, (𝑓(𝐴))
𝜔

(𝑛1𝑛2, 𝑞) ≥ min{(𝑓(𝐴))
𝜔

(𝑛1, 𝑞)(𝑓(𝐴))
𝜔

(𝑛2, 𝑞)}. 

 

Consequently, 𝑓(𝐴) is 𝜔-QFSR of 𝑅2. 
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Theorem 4.3: Let 𝑓 ∶ 𝑅1 ⟶ 𝑅2 be a homomorphism from ring 𝑅1 into a ring 𝑅2 and 𝐵 be a 𝜔-

QFSR of ring 𝑅2. Then 𝑓−1(𝐵) is 𝜔-QFSR of ring 𝑅1. 

Proof: Let 𝐵 be 𝜔-QFSR of ring 𝑅2. Let 𝑚1, 𝑚2 ∈ 𝑅1 be any elements, then  

(𝑓−1(𝐵))
𝜔

(𝑚1 − 𝑚2, 𝑞) = 𝑓−1(𝐵𝜔)(𝑚1 − 𝑚2, 𝑞) = 𝐵𝜔(𝑓(𝑚1 − 𝑚2), 𝑞) 

= 𝐵𝜔(𝑓(𝑚1) − 𝑓(𝑚2), 𝑞)  

≥ min{𝐵𝜔(𝑓(𝑚1), 𝑞), 𝐵𝜔(𝑓(𝑚2), 𝑞)} = min{𝑓−1(𝐵𝜔)(𝑚1, 𝑞), 𝑓−1(𝐵𝜔)(𝑚2, 𝑞)} 

= min{(𝑓−1(𝐵))
𝜔

(𝑚1, 𝑞), (𝑓−1(𝐵))
𝜔

(𝑚2, 𝑞)} 

Thus, (𝑓−1(𝐵))
𝜔

(𝑚1𝑚2, 𝑞) ≥ min{(𝑓−1(𝐵))
𝜔

(𝑚1, 𝑞), (𝑓−1(𝐵))
𝜔

(𝑚2, 𝑞)}. 

Further,  

(𝑓−1(𝐵))
𝜔

(𝑚1𝑚2, 𝑞) = 𝑓−1(𝐵𝜔)(𝑚1𝑚2, 𝑞) = 𝐵𝜔(𝑓(𝑚1𝑚2), 𝑞) = 𝐵𝜔(𝑓(𝑚1)𝑓(𝑚2), 𝑞) 

≥ min{𝐵𝜔(𝑓(𝑚1), 𝑞), 𝐵𝜔(𝑓(𝑚2), 𝑞)} = min{𝑓−1(𝐵𝜔)(𝑚1, 𝑞), 𝑓−1(𝐵𝜔)(𝑚2, 𝑞)} 

= min{(𝑓−1(𝐵))
𝜔

(𝑚1, 𝑞), (𝑓−1(𝐵))
𝜔

(𝑚2, 𝑞)} 

Thus, (𝑓−1(𝐵))
𝜔

(𝑚1𝑚2, 𝑞) ≥ min{(𝑓−1(𝐵))
𝜔

(𝑚1, 𝑞), (𝑓−1(𝐵))
𝜔

(𝑚2, 𝑞)}. 

Consequently, 𝑓−1(𝐵) is 𝜔-QFSR of a ring 𝑅1. 

5. Conclusion 

In paper, we have proved the level subset of two 𝜔-𝑄-fuzzy subrings is a subring. In addition, 

we have extended the study of this ideology to investigate the effect of image and inverse image 

of 𝜔-QFSR under ring homomorphism. 
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