Certain Properties of $\boldsymbol{\omega}$ - \boldsymbol{Q}-Fuzzy Subrings

${ }^{1}$ Muhammad Gulzar, ${ }^{2}$ Dilshad Alghazzawi, ${ }^{3}$ Ghazanfar Abbas, ${ }^{4}$ Wafaa H. Hanoon, ${ }^{1}$ Department of Mathematics, Government College University Faisalabad, 38000, Pakistan Email:98kohly@ gmail.com
${ }^{2}$ Department of mathematics, King Abdulaziz University (Rabigh), Saudi Arabia, Email: dalghazzawi@kau.edu.sa
${ }^{3}$ Department of Mathematics and Statistics, Institute of Southern Punjab, Multan Email: ghazanfar503@gmail.com
${ }^{4}$ Department of Computer Science, College of Education for Girls, University of Kufa, Kufa, Iraq. Email: wafaa.hannon@uokufa.edu.iq

Abstract

In this paper, we define the ω - Q-fuzzy subring and discussed various fundamental aspects of ω - Q-fuzzy subrings. We introduce the concept of ω - Q-level subset of this new fuzzy set and prove that ω - Q-level subset of ω - Q-fuzzy subring form a ring. We define ω - Q-fuzzy ideal and show that set of all $\omega-Q$-fuzzy cosets form a ring. Moreover, we investigate the properties of homomorphic image of ω - Q-fuzzy subring. Keywords: Q-fuzzy set; Q-fuzzy subring (QFSR); ω - Q-fuzzy set; ω - Q-fuzzy subring (ω QFSR); ω - Q-fuzzy ideal (ω-QFI).

Mathematics subject classification: 03E72; 08A72; 20 N 25.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [17] in 1965. Rosenfeld [14] commenced the idea of fuzzy subgroups in 1971. The fuzzy subrings were initiated by Liu [8] Dixit et al. [5] described the notion of level subgroup in 1990. Gupta [6] defined many classical t operators in 1991. Solairaju and Nagarajan [15] explored a new structure and construction of Q-fuzzy groups in 2009. Muthuraj et al. [10] proposed the study of lower level subsets of antiQFS in 2010. The concept of Q-fuzzy normal subgroups and Q-fuzzy normalizer were established by Priya et al. [11] in 2013. Sither Selvam et al. [12] used the Biswas [4] work to modify the idea of anti-QFNS in 2014. Alsarahead and Ahmed [1-3] commenced new concept of complex fuzzy subring, complex fuzzy subgroup and complex fuzzy soft subgroups in 2017. The Q-fuzzy subgroup in algebra was discussed in [7]. Rasuli [13] discussed Q fuzzy subring with respect to t-norm in 2018. More development about fuzzy subgroup may be viewed in $[9,16]$. This paper is organized as the section 2 contains the elementary definition
of Q-fuzzy subrings and related results which are thoroughly crucial to understand the novelty of this article. In section 3 , we define the ω - Q-fuzzy subring and prove that the level subset of ω - Q-fuzzy subrings is a subring. We also define ω - Q-fuzzy ideal and discuss its properties. In section 5 , we use the classical ring homomorphism to investigate the behavior of homomorphic image (inverse-image) of ω - Q-fuzzy subring.

2. Preliminaries

We recall first the elementary notion of fuzzy sets which play a key role for our further analysis.
Definition (2.1) [17]: A fuzzy set A of a nonempty set M is a function

$$
A: P \rightarrow[0,1] .
$$

Definition (2.2) [12]: Let A be fuzzy subset of a ring R. Then A is said to a fuzzy subring if
i. $\quad A(u-v) \geq \min \{A(u), A(v)\}$
ii. $\quad A(u v) \geq \min \{A(u), A(v)\}$, for all $u, v \in R$.

Definition (2.3) [15]: Let M and Q be two nonempty sets. A Q-fuzzy subset A of set M is a function $A: X \times Q \rightarrow[0,1]$ for all $u, v \in M$ and $q \in Q$.
Definition (2.4) [13]: A function $A: R \times Q \rightarrow[0,1]$ is a QFSRR of a ring R if
i. $\quad A(u-v, q) \geq \min \{A(u, q), A(v, q)\}$
ii. $\quad A(u v, q) \geq \min \{A(u, q), A(v, q)\}$, for all $u, v \in R$ and $q \in Q$.

Definition (2.5) [13]: Let the mapping $f: R_{1} \rightarrow R_{2}$ be a homomorphism. Let A and B be ω QFSRs of R_{1} and R_{2} respectively, then $f(A)$ and $f^{-1}(B)$ are image of A and the inverse image of B respectively, defined as
i. $f(A)(v, q)=\left\{\begin{array}{ll}\sup \left\{A(u, q): u \in f^{-1}(v)\right\}, & \text { if } f^{-1}(v) \neq \varnothing \\ 0, & \text { if } f^{-1}(v)=\varnothing\end{array}\right.$, for every $v \in R_{2}$ and $q \in Q$
ii. $\quad f^{-1}(B)(u, q)=B(f(u), q)$, for every $u \in R_{1}$ and $q \in Q$

Definition (2.6) [6]: Let $t_{p}:[0,1] \times[0,1] \rightarrow[0,1]$ be the algebraic product t-norm on $[0,1]$ and is described as $t_{p}\{a, b\}=a b, 0 \leq a \leq 1,0 \leq b \leq 1$

3. Properties of $\boldsymbol{\omega}$ - \boldsymbol{Q}-fuzzy subrings

Definition (3.1): Let M and Q be any two nonempty sets and A be a Q-fuzzy subset of a set P, any $\omega \in[0,1]$. Then fuzzy set A^{ω} of M is said to be ω - Q-fuzzy subset of M (w.r.t Q-fuzzy set $A)$ and defined by

$$
A^{\omega}(m, q)=t_{p}\{A(m, q), \omega\}, \quad \text { for all } m \in M \text { and } q \in Q
$$

Remark (3.2): Clearly, $A^{1}(m, q)=A(m, q)$ and $A^{0}(m, q)=0$.

Remark (3.3): If A and B be two Q-fuzzy sets of M. Then $(A \cap B)^{\omega}=A^{\omega} \cap B^{\omega}$.
Definition (3.4): A Q-fuzzy subset of a ring R is called ω-QFSR, and $\omega \in[0,1]$, if
i $A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$, for all $m, n \in R$ and $q \in Q$.
ii $A^{\omega}(m n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$, for all $m, n \in R$ and $q \in Q$
Theorem (3.5): If A is a ω-QFSR of a ring R, then
$A^{\omega}(m, q) \leq A^{\omega}(0, q)$, for all $m \in R$ and $q \in Q$ where 0 is the additive identity of R.
Proof: Consider $A^{\omega}(0, q)=A^{\omega}(m-m, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}\left(m^{-1}, q\right)\right\}$
$=\min \left\{A^{\omega}(m, q), A^{\omega}(m, q)\right\}=A^{\omega}(m, q)$
Hence, $\quad A^{\omega}(0, q) \geq A^{\omega}(m, q)$, for all $m \in R$
Theorem (3.6): If A is QFSR of a ring H, then A is an ω-QFSR of R.
Proof: Assume that A is a QFSR of a ring R and $\forall a, b \in R$ and $q \in Q$.
Assume that, $A^{\omega}(a-b, q)=t_{p}\{A(a-b, q), \mu\} \geq t_{p}\{\min \{A(a, q), A(b, q)\}, \omega\}$
$=\min \left\{t_{p}\{A(a, q), \omega\}, t_{p}\{A(b, q), \omega\}\right\}=\min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
$A^{\omega}(a-b, q) \geq \min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
Further $A^{\omega}(a b, q)=t_{p}\{A(a b, q), \mu\} \geq t_{p}\{\min \{A(a, q), A(b, q)\}, \omega\}$
$=\min \left\{t_{p}\{A(a, q), \omega\}, t_{p}\{A(b, q), \omega\}\right\}=\min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
$A^{\omega}(a b, q) \geq \min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
Consequently, A is ω-QFSR of R. In general, the converse may not be true.
Note 3.7: we take $Q=\{q\}$ in all the examples
Example (3.8): Let $R=\{0,1,2,3\}$, be a ring and $Q=\{q\}$. Let the Q-fuzzy set A of R described by

$$
A(a, q)=\left\{\begin{array}{cc}
0.3, & \text { if } a=0 \\
0.5, & \text { if } a=1 \text { or } 3 \\
0.4, & \text { if } a=2
\end{array}\right.
$$

Take $\omega=0$ then
$A^{\omega}(a, q)=t_{p}\{A(a, q), \omega\}=t_{p}\{A(a, q), 0\}=0$, for all $a \in R$
$\Rightarrow A^{\omega}(a-b, q) \geq \min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
Further, we have $A^{\omega}(a b, q) \geq \min \left\{A^{\omega}(a, q), A^{\omega}(b, q)\right\}$
Consequently A is ω-QFSR of R and A is not QFSR of R.
Definition 3.9: Let A be ω-Q-fuzzy set of universe set M. For $t, \omega \in[0,1]$ the level subset A_{t}^{ω} of ω - Q-fuzzy set is given by

$$
A_{t}^{\omega}=\left\{m \in M: A^{\omega}(m, q) \geq t\right\}
$$

Theorem (3.10): Let A is ω - Q-fuzzy subring of R then A_{t}^{ω} is subring of R for all $t \leq A(e, q)$.
Proof: It is quite obvious that A^{ω} is non-empty. Since A be ω - Q-fuzzy subring of a ring R, which implies that $A^{\omega}(m, q) \leq A^{\omega}(e, q)$, for all $m \in R$ and $q \in Q$. Let $m, n \in A_{t}^{\omega}$ then $A^{\omega}(m, q) \geq t a A^{\omega}(n, q) \geq t$.

Now

$$
A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\} \geq \min \{t, t\}=t
$$

$$
A^{\omega}(m n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\} \geq \min \{t, t\}=t
$$

This implies that $\quad m-n, m n \in A_{t}^{\omega}$. Hence, A_{t}^{ω} is subring of R.
Definition 3.11: Let A be a Q-fuzzy subset of a ring R and $\omega \in[0,1]$. Then A^{ω} is ω - Q-fuzzy left ideal (ω-QFLI) of R if
i $A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$
ii $A^{\omega}(m n, q) \geq A^{\omega}(n, q)$, for all $m, n \in R$ and $q \in Q$
Definition 3.12: Let A be a Q-fuzzy subset of a ring R and $\omega \in[0,1]$. Then A^{ω} is ω - Q-fuzzy right ideal (ω-QFRI) of R if
i. $\quad A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$
ii. $\quad A^{\omega}(m n, q) \geq A^{\omega}(m, q)$, for all $m, n \in R$ and $q \in Q$

Definition 3.13: Let A be a Q-fuzzy subset of a ring R and $\omega \in[0,1]$. Then A^{ω} is ω-QFI of R if
i. $\quad A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$
ii. $\quad A^{\omega}(m n, q) \geq \max \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}$, for all $m, n \in R$ and $q \in Q$

Definition 3.14: Let A be a ω-QFSR of a ring R and $\omega \in[0,1]$. For any $m \in R$ and $q \in Q$,
The ω - Q-fuzzy coset of A in R is represented by $m+A^{\omega}$ as defined as

$$
\left(m+A^{\omega}\right)(h, q)=t_{p}\{A(h-m, q), \omega\}=A^{\omega}(h-m), \text { for all } m, h \in R \text { and } q \in Q
$$

Theorem 3.15: Let A be ω-QFI of ring R. Then the set $A_{0}^{\omega}=\left\{m \in R: A^{\omega}(m, q)=A^{\omega}(0, q)\right\}$ is an ideal of ring R.
Proof: Obviously $A_{0}^{\omega} \neq \varphi$ because $0 \in R$. Let $m, n \in A_{0}^{\omega}$ be any elements.
Consider

$$
A^{\omega}(m-n, q) \geq \min \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}=\min \left\{A^{\omega}(0, q), A^{\omega}(0, q)\right\}
$$

Implies that $\quad A^{\omega}(m-n, q) \geq A^{\omega}(0, q)$. But $A^{\omega}(m-n, q) \leq A^{\omega}(0, q)$
Therefore, $\quad A^{\omega}(m-n, q)=A^{\omega}(0)$
Implies that $\quad m-n \in A_{0}^{\omega}$.
Further, let $m \in A_{(\alpha, \beta)}^{0}$ and $n \in R$. Consider
$A^{\omega}(m n, q) \geq \max \left\{A^{\omega}(m, q), A^{\omega}(n, q)\right\}=\max \left\{A^{\omega}(0, q), A^{\omega}(n, q)\right\}$,

Implies that $\quad A^{\omega}(m n, q) \geq A^{\omega}(0, q)$. But $A^{\omega}(m n, q) \leq A^{\omega}(0, q)$
Therefore, $\quad A^{\omega}(m n, q)=A^{\omega}(0, q)$.
Similarly, $A^{\omega}(n m, q)=A^{\omega}(0, q)$
Implies that $\quad m n, n m \in A_{0}^{\omega}$.
Implies that $\quad A_{0}^{\omega}$ is an ideal.

Theorem 3.16: Let A_{0}^{ω} be an ω-QFI of ring $R, m, n \in R$ and $q \in Q$. Then

$$
m+A^{\omega}=n+A^{\omega} \quad \text { if and if only } m-n \in A_{0}^{\omega} .
$$

Proof: For any $m, n \in S$, we have $m+A^{\omega}=n+A^{\omega}$.
Consider,

$$
A^{\omega}(m-n, q)=\left(n+A^{\omega}\right)(m, q)=\left(m+A^{\omega}\right)(m, q)=A^{\omega}(0, q)
$$

Therefore, $m-n \in A_{0}^{\omega}$.
Conversely, let $m-n \in A_{0}^{\omega}$
Implies that $\quad A^{\omega}(m-n, q)=A^{\omega}(0, q)$
Consider, $\quad\left(m+A^{\omega}\right)(h, q)=A^{\omega}(h-m, q)=A^{\omega}((h-n)-(m-n), q)$
$\geq \min \left\{A^{\omega}((h-n), q), A^{\omega}((m-n), q)\right\}$
$=\min \left\{A^{\omega}((h-n), q), A^{\omega}(0, q)\right\}=A^{\omega}((h-n), q)=\left(n+A^{\omega}\right)(h, q)$
Interchange the role of p and q we get $\quad\left(n+A^{\omega}\right)(h, q) \geq\left(m+A^{\omega}\right)(h, q)$
Therefore, $\left(m+A^{\omega}\right)(h, q)=\left(n+A^{\omega}\right)(h, q)$, for all $h \in R$
Definition (3.17): Let A be a ω-QFI of a ring R. The set of all ω - Q-fuzzy cosets of A denoted by R / A^{ω} form a ring with respect to binary operation * defined by

$$
\left(m+A^{\omega}\right)+\left(n+A^{\omega}\right)=(m+n)+A^{\omega}, \text { where } m+A^{\omega}, n+A^{\omega} \in
$$

$R / A^{\omega}, m, n \in R$.

$$
\left(m+A^{\omega}\right) *\left(n+A^{\omega}\right)=(m * n)+A^{\omega}, \text { where } m+A^{\omega}, n+A^{\omega} \in
$$

$R / A^{\omega}, m, n \in R$. The ring R / A^{ω} is called the factor ring of R with respect to ω-QFI A^{ω}.
Theorem (3.18): The set R / A^{ω} forms a ring with respect to the above stated binary operation.
Proof: Let $m_{1}+A^{\omega}=m_{2}+A^{\omega}$ and $n_{1}+A^{\omega}=n_{2}+A^{\omega}$ for some $m_{1}, m_{2}, n_{1}, n_{2} \in R$.
Let $g \in R$ be any element of R and $q \in Q$.

$$
\begin{aligned}
& \quad\left(m_{2}+n_{2}+A^{\omega}\right)(g, q)=A^{\omega}\left(g-\left(m_{2}+n_{2}\right), q\right) \\
& \left.\left.\left.=A^{\omega}\left(g-m_{2}-n_{2}\right), q\right)=n_{2}+A^{\omega}\left(g-m_{2}\right), q\right)=n_{1}+A^{\omega}\left(g-m_{2}\right), q\right) \\
& \left.\left.\left.=A^{\omega}\left(g-m_{2}-n_{1}\right), q\right)=m_{2}+A^{\omega}\left(g-n_{1}\right), q\right)=m_{1}+A^{\omega}\left(g-n_{1}\right), q\right) \\
& \left.=A^{\omega}\left(g-m_{1}-n_{1}\right), q\right)=A^{\omega}\left(g-\left(m_{1}+n_{1}\right), q\right)=\left(m_{1}+n_{1}+A^{\omega}\right)(g, q)
\end{aligned}
$$

Moreover,

$$
\begin{gathered}
\left(m_{2} n_{2}+A^{\omega}\right)(g, q)=A^{\omega}\left(g-m_{1} n_{1}-\left(m_{2} n_{2}-m_{1} n_{1}\right), q\right) \\
\geq \min \left\{A^{\omega}\left(g-m_{1} n_{1}\right), A^{\omega}\left(\left(m_{2} n_{2}-m_{1} n_{1}\right), q\right)\right\}
\end{gathered}
$$

But we have, $A^{\omega}\left(\left(m_{2} n_{2}-m_{1} n_{1}\right), q\right)=A^{\omega}\left(\left(m_{1} n_{1}-m_{2} n_{1}+m_{2} n_{1}-m_{2} n_{2}\right), q\right)$

$$
\begin{gathered}
\left.=A^{\omega}\left(\left(m_{1}-m_{2}\right) n_{1}+m_{2}\left(n_{1}-n_{2}\right), q\right) \geq \min \left\{A^{\omega}\left(m_{1}-m_{2}\right) n_{1}, q\right), A^{\omega}\left(m_{2}\left(n_{1}-n_{2}\right), q\right)\right\} \\
=\min \left\{A^{\omega}\left(\left(m_{1}-m_{2}\right), q\right), A^{\omega}\left(\left(n_{1}-n_{2}\right), q\right)\right\} \\
=\min \left\{A^{\omega}(0, q), A^{\omega}(0, q)\right\}
\end{gathered}
$$

, $A^{\omega}\left(\left(m_{2} n_{2}-m_{1} n_{1}\right), q\right) \geq A^{\omega}(0, q)$,

$$
\begin{gathered}
\left.\left(m_{2} n_{2}+A^{\omega}\right)(g, q) \geq A^{\omega}\left(g-m_{1} n_{1}\right), q\right) \\
=\left(m_{1} n_{1}+A^{\omega}\right)(g, q)
\end{gathered}
$$

Similarly, we can prove that $\left(m_{2} n_{2}+A^{\omega}\right)(g, q) \leq\left(m_{1} n_{1}+A^{\omega}\right)(g, q)$
Consequently, $\left(m_{2} n_{2}+A^{\omega}\right)(g, q)=\left(m_{1} n_{1}+A^{\omega}\right)(g, q)$.
Therefore $*$ is well defined. Now we prove that the following axioms of ring, for any $m, n \in$ R.

1. $\left(m+A^{\omega}\right)+\left(n+A^{\omega}\right)=m+n+A^{\omega}$
2. $\left(m+A^{\omega}\right)+\left[\left(n+A^{\omega}\right)+\left(r+A^{\omega}\right)\right]=m+A^{\omega}+\left[n+r+A^{\omega}\right]=(m+n)+r+A^{\omega}=$ $\left[m+n+A^{\omega}\right]+r+A^{\omega}=\left[\left(m+A^{\omega}\right)+\left(n+A^{\omega}\right)\right]+\left(r+A^{\omega}\right)$
3. $\left(m+A^{\omega}\right)+\left(n+A^{\omega}\right)=m+n+A^{\omega}=n+m+A^{\omega}=\left(n+A^{\omega}\right)+\left(m+A^{\omega}\right)$
4. $\left(0+A^{\omega}\right)+\left(n+A^{\omega}\right)=\left(n+A^{\omega}\right)$
5. $\left(m+A^{\omega}\right)+\left(-m+A^{\omega}\right)=A^{\omega}$
6. $\left(m+A^{\omega}\right)\left(n+A^{\omega}\right)=m n+A^{\omega}$
7. $\left(m+A^{\omega}\right)\left[\left(n+A^{\omega}\right)\left(r+A^{\omega}\right)\right]=m+A^{\omega}+\left[n r+A^{\omega}\right]=m n r+A^{\omega}=\left[m n+A^{\omega}\right]+$ $r+A^{\omega}=\left[\left(m+A^{\omega}\right)\left(n+A^{\omega}\right)\right]\left(r+A^{\omega}\right)$
8. $\left(m+A^{\omega}\right)\left[\left(n+A^{\omega}\right)+\left(r+A^{\omega}\right)\right]=\left(m+A^{\omega}\right)\left[(n+r)+A^{\omega}\right]=m(n+r)+A^{\omega}=$ $(m n+m r)+A^{\omega}=\left(m n+A^{\omega}\right)+\left(m r+A^{\omega}\right)=\left[\left(m+A^{\omega}\right)\left(n+A^{\omega}\right)+\left(m+A^{\omega}\right)(r+\right.$ $\left.A^{\omega}\right)$]

Consequently, $\left(R / A^{\omega},+, *\right)$ is a ring.

4. Homomorphism of $\boldsymbol{\omega}$ - \boldsymbol{Q}-fuzzy subrings

In this section, we investigate the behavior of homomorphic image and inverse image of ω QFSR.

Lemma 4.1: Let $f: M \rightarrow N$ be a mapping and A and B be two fuzzy subsets of M and N respectively, then
i. $\quad f^{-1}\left(B^{\omega}\right)(m, q)=\left(f^{-1}(B)\right)^{\omega}(m, q)$, for all $m \in M$ and $q \in Q$
ii. $\quad f\left(A^{\omega}\right)(n, q)=(f(A))^{\omega}(n, q)$, for all $n \in N$ and $q \in Q$

Proof: (i) $f^{-1}\left(B^{\omega}\right)(m)=B^{\omega}(f(m))=t_{p}\{B(f(m)), \omega\}=t_{p}\left\{f^{-1}(B)(m), \omega\right\}$

$$
f^{-1}\left(B^{\omega}\right)(m)=\left(f^{-1}(B)\right)^{\omega}(m), \quad \text { for all } m \in M
$$

(ii) $f\left(A^{\omega}\right)(n, q)=\sup \left\{A^{\omega}(m, q): f(m)=y\right\}=\sup \left\{t_{p}\{A(m, q), \omega\}: f(m)=n\right\}$
$=t_{p}\{\sup \{\{A(m, q): f(m)=n\}, \omega\}\}=t_{p}\{f(A)(n, q), \omega\}=(f(A))^{\omega}(n, q)$, for all $n \in N$
Hence,

$$
f\left(A^{\omega}\right)(n, q)=(f(A))^{\omega}(n, q)
$$

Theorem 4.2: Let $f: R_{1} \rightarrow R_{2}$ be a homomorphism from a ring R_{1} to a ring R_{2} and A be a ω QFSR of ring R_{1}. Then $f(A)$ is a ω-QFSR of ring R_{2}.

Proof: Let A be a ω-QFSR of ring R_{1}. Let $n_{1}, n_{2} \in R_{2}$ be any element. Then there exists unique elements $m_{1}, m_{2} \in R_{1}$ such that $f\left(m_{1}\right)=n_{1}$ and $f\left(m_{2}\right)=n_{2}$ and for $q \in Q$.

Consider,
$(f(A))^{\omega}\left(n_{1}-n_{2}, q\right)=t_{p}\left\{f(A)\left(n_{1}-n_{2}, q\right), \omega\right\}=t_{p}\left\{f(A)\left(f\left(m_{1}\right)-f\left(m_{2}\right), q\right), \omega\right\}$
$=t_{p}\left\{f(A)\left(f\left(m_{1}-m_{2}\right), q\right), \omega\right\}=t_{p}\left\{A\left(m_{1}-m_{2}, q\right), \omega\right\}=A^{\omega}\left(m_{1}-m_{2}, q\right)$
$\geq \min \left\{A^{\omega}\left(m_{1}, q\right), A^{\omega}\left(m_{2}, q\right)\right\}$, for all $m_{1}, m_{2} \in H_{1}$ such that $f\left(m_{1}\right)=n_{1}$ and $\left.f\left(m_{2}\right)=n_{2}\right\}$
$\geq \min \left\{\sup \left\{A^{\omega}\left(m_{1}, q\right): f\left(m_{1}\right)=n_{1}\right\}, \sup \left\{A^{\omega}\left(m_{2}, q\right): f\left(m_{2}\right)=n_{2}\right\}\right\}$
$=\min \left\{f\left(A^{\omega}\right)\left(n_{1}, q\right), f\left(A^{\omega}\right)\left(n_{2}, q\right)\right\}=\min \left\{(f(A))^{\omega}\left(n_{1}, q\right),(f(A))^{\omega}\left(n_{2}, q\right)\right\}$
Thus, $(f(A))^{\omega}\left(n_{1} n_{2}, q\right) \geq \min \left\{(f(A))^{\omega}\left(n_{1}, q\right)(f(A))^{\omega}\left(n_{2}, q\right)\right\}$.
Further, $(f(A))^{\omega}\left(n_{1} n_{2}, q\right)=t_{p}\left\{f(A)\left(n_{1} n_{2}, q\right), \omega\right\}=t_{p}\left\{f(A)\left(f\left(m_{1}\right) f\left(m_{2}\right), q\right), \omega\right\}$
$=t_{p}\left\{f(A)\left(f\left(m_{1} m_{2}\right), q\right), \omega\right\}=t_{p}\left\{A\left(m_{1} m_{2}, q\right), \omega\right\}=A^{\omega}\left(m_{1} m_{2}, q\right)$
$\geq \min \left\{A^{\omega}\left(m_{1}, q\right), A^{\omega}\left(m_{2}, q\right)\right\}$, for all $m_{1}, m_{2} \in H_{1}$ such that $f\left(m_{1}\right)=n_{1}$ and $\left.f\left(m_{2}\right)=n_{2}\right\}$
$\geq \min \left\{\sup \left\{A^{\omega}\left(m_{1}, q\right): f\left(m_{1}\right)=n_{1}\right\}, \sup \left\{A^{\omega}\left(m_{2}, q\right): f\left(m_{2}\right)=n_{2}\right\}\right\}$
$=\min \left\{f\left(A^{\omega}\right)\left(n_{1}, q\right), f\left(A^{\omega}\right)\left(n_{2}, q\right)\right\}=\min \left\{(f(A))^{\omega}\left(n_{1}, q\right),(f(A))^{\omega}\left(n_{2}, q\right)\right\}$
Thus, $(f(A))^{\omega}\left(n_{1} n_{2}, q\right) \geq \min \left\{(f(A))^{\omega}\left(n_{1}, q\right)(f(A))^{\omega}\left(n_{2}, q\right)\right\}$.

Consequently, $f(A)$ is ω-QFSR of R_{2}.

Theorem 4.3: Let $f: R_{1} \rightarrow R_{2}$ be a homomorphism from ring R_{1} into a ring R_{2} and B be a ω QFSR of ring R_{2}. Then $f^{-1}(B)$ is ω-QFSR of ring R_{1}.
Proof: Let B be ω-QFSR of ring R_{2}. Let $m_{1}, m_{2} \in R_{1}$ be any elements, then
$\left(f^{-1}(B)\right)^{\omega}\left(m_{1}-m_{2}, q\right)=f^{-1}\left(B^{\omega}\right)\left(m_{1}-m_{2}, q\right)=B^{\omega}\left(f\left(m_{1}-m_{2}\right), q\right)$
$=B^{\omega}\left(f\left(m_{1}\right)-f\left(m_{2}\right), q\right)$
$\geq \min \left\{B^{\omega}\left(f\left(m_{1}\right), q\right), B^{\omega}\left(f\left(m_{2}\right), q\right)\right\}=\min \left\{f^{-1}\left(B^{\omega}\right)\left(m_{1}, q\right), f^{-1}\left(B^{\omega}\right)\left(m_{2}, q\right)\right\}$
$=\min \left\{\left(f^{-1}(B)\right)^{\omega}\left(m_{1}, q\right),\left(f^{-1}(B)\right)^{\omega}\left(m_{2}, q\right)\right\}$
Thus, $\left(f^{-1}(B)\right)^{\omega}\left(m_{1} m_{2}, q\right) \geq \min \left\{\left(f^{-1}(B)\right)^{\omega}\left(m_{1}, q\right),\left(f^{-1}(B)\right)^{\omega}\left(m_{2}, q\right)\right\}$.
Further,

$$
\left(f^{-1}(B)\right)^{\omega}\left(m_{1} m_{2}, q\right)=f^{-1}\left(B^{\omega}\right)\left(m_{1} m_{2}, q\right)=B^{\omega}\left(f\left(m_{1} m_{2}\right), q\right)=B^{\omega}\left(f\left(m_{1}\right) f\left(m_{2}\right), q\right)
$$

$\geq \min \left\{B^{\omega}\left(f\left(m_{1}\right), q\right), B^{\omega}\left(f\left(m_{2}\right), q\right)\right\}=\min \left\{f^{-1}\left(B^{\omega}\right)\left(m_{1}, q\right), f^{-1}\left(B^{\omega}\right)\left(m_{2}, q\right)\right\}$
$=\min \left\{\left(f^{-1}(B)\right)^{\omega}\left(m_{1}, q\right),\left(f^{-1}(B)\right)^{\omega}\left(m_{2}, q\right)\right\}$
Thus, $\left(f^{-1}(B)\right)^{\omega}\left(m_{1} m_{2}, q\right) \geq \min \left\{\left(f^{-1}(B)\right)^{\omega}\left(m_{1}, q\right),\left(f^{-1}(B)\right)^{\omega}\left(m_{2}, q\right)\right\}$.
Consequently, $f^{-1}(B)$ is ω-QFSR of a ring R_{1}.

5. Conclusion

In paper, we have proved the level subset of two $\omega-Q$-fuzzy subrings is a subring. In addition, we have extended the study of this ideology to investigate the effect of image and inverse image of ω-QFSR under ring homomorphism.

Acknowledgment

This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Conflict of interest

All authors declare no conflict of interest in this paper.

References

[1] M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subgroups, Applied Mathematical Sciences, 11(2017), 2011 - 2021.
[2] M. O. Alsarahead, A. G. Ahmad, Complex fuzzy subrings, International Journal of Pure and Applied Mathematics, 117(2017),563-577.
[3] M. O. Alsarahead, A. G. Ahmad, Complex fuzzy soft subgroups, Journal of Quality Measurement and Analysis 13(2017), $17-28$.
[4] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups. Fuzzy Sets and Systems, 35 (1990), 121 - 124.
[5] V. N. Dixit, R. Kumar, N. Ajmal, Level subgroups and union of fuzzy subgroups. Fuzzy Sets and Systems, 37 (1990), 359-371.
[6] M. M. Gupta, J. Qi, Theory of T-norms and fuzzy inference methods, Fuzzy Sets and Systems, 40 (1991), 431-450.
[7] Dr. R. Jahir Hussain, A Review On Q-fuzzy subgroup in Algebra. International Journal of Applied Engineering Research 14 (2019), 60 - 63.
[8] W. J. Liu, Fuzzy invariant subgroups and fuzzy ideals. Fuzzy Sets Syst. 8 (1982), 133 139.
[9] B. B. Makamba, V. Murali, A class of fuzzy subgroups of finite reflection groups, Journal of Intelligent and Fuzzy Systems, 33 (2017) 979 - 983.
[10] Dr. R. Muthuraj, P. M. Sitharselvam, M. S. Muthuraman, Anti Q-Fuzzy Group and Its Lower Level Subgroups. International Journal of Computer Application, 3(2010), 16 20.
[11] Priya, T. Ramachandran, K. T. Nagalakshmi, On Q-fuzzy Normal Subgroups. International Journal of computer and Organization Trends, 3(2013), 39-42.
[12] P. M. Sithar selvam, T. Priya, K. T. Nagalakshmi and T. Ramachandran On Some properties of anti - Q-fuzzy Normal Subgroups. General Mathematics Notes, 22(2014), 1 - 10.
[13] R. Rasuli, Characterization of Q-fuzzy subrings (Anti Q-fuzzy subrings) with respect to a T-norm (T-conorm), Journal of Information and Optimization Sciences, 39(2018), 827-837.
[14] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35(1971), 512 - 517.
[15] A. Solairaju, and R. Nagarajan, A new structure and construction of Q - fuzzy groups. Advances in Fuzzy Mathematics, 4 (2009), 23 - 29.
[16] S. A. Trevijano, M. J. Chasco and J. Elorza, The annihilator of fuzzy subgroups, Fuzzy Sets and Systems 369, No (2019), 122 - 131.
[17] L.A. Zadeh, Fuzzy sets, Inform. and Control, 8 (1965), 338 - 353.

