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 Recently with increased adoption of big data, Internet of Things and sensor 
technology by various organization for provisioning smart intelligent 
services for various application uses. Data processing on real-time social 
media and sensor data is been a key area of research in recent times and these 
data are massive and continuous. Smart application using sensor and social 
media data can be classified into three class: 1) online processing of 
streaming data; 2) online processing of historical data; and 3) hybrid 
processing of both. The existing model are designed considering stream or 
batch processing. For provisioning real-time processing MapReduce 
framework using Hadoop framework is considered by state-of-art technique 
for data inflow forecasting. However, the Hadoop based forecasting model 
are not efficient in fully utilizing system resource. Agent based MapReduce 
forecasting model is adopted by state-of-art technique to utilize system 
efficiently. However, they incurs high computation overhead, thus increase 
cost of computing cost. To overcome this work present an agent based Data 
Inflow Forecasting (DIF) model for both stream and non-stream (historical) 
data by using Multivariate Gaussian Mixture (MGM) model. This work 
present an Agent based MapReduce (AMR) framework to process data in 
real-time and utilize system resource efficiently. To provide scalability for 
processing social media and sensor data DIF-AMR model adopts cloud 
computing architecture. Experiment are conducted to evaluate performance 
of DIF-AMR of over existing model shows significant performance 
improvement in terms of computation time. 
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1. INTRODUCTION 

With increasing adoption of Internet of Things (IoT) to provision real-time services for various 
smart application uses. Such as smart transportation system, disaster management system etc. where sensor 
are deployed across the globe to provision real-time services to users.  Data processing based on real-time 
sensor data is been a key research area of various academia, industry and government organization in recent 
times. A data driven paradigm of smart infotainment applications, aiming at mining the essential value of 
sensor data and promoting smart services, is arisen in smart intelligent transport domain [1]. However, sensor 
data and its real-time application services have some new characteristics comparing to traditional sensor data 
and applications: 
1) Massiveness: With the growth of smart infotainment application services, large amount of data is 

generated by different sensor periodically. For example, location and traffic management services 
generates sensor data at very high rate, which lead to size of petabyte of data in a short term. 
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2) Streaming: Sensor data from different sources such as user wearable and its location and mobility 
information arrives into the server continuously from various sources as a streams at rapid rate. 
Efficient mechanism is needed to process/perform analysis on such stream data in real-time without any 
interruption.  

3) Real-Time: In many application services such as pollution monitoring, live vehicle traffic monitoring 
computing, we need react quickly to such large sensor data once they are generated. Since these 
information becomes obsolete/outdated quickly. Performing analysis on such large data in near real-
time requires an efficient mechanism to collect input stream, organize the data and perform computing 
and data analysis.  

4) Ever-Expanding: As years passes new type and number of sensors available in market increases. 
A scalable real-time processing design is required to handle such ever increasing sensor data volume. 
That is, the future real-time prediction model should not only process large volume of sensor data and 
guarantee real-time quality by adding computing nodes, but also new types of sensor data easily.   

Additionally, there are many application based on sensor data processing which can be classified 
into three classes based on how the sensor data are processed as shown in Table 1. Online processing of 
streaming data, offline processing of historical/statistical data and hybrid processing of both historical and 
streaming data. To cope with different applications in smart infotainment domain, the processing system need 
to deal with both massively large historical data and streaming data. The historical sensor data is considered 
to be more valuable and hence need to be mixed with stream data in many cases for performing statistical 
computation, pattern discovery and data inflow prediction. 

 
 

Table 1. Sensor Data Application Types 
Type Application Characteristic  
Online processing of real-time streaming 
sensor data 

Fake license plate detection, black listed 
vehicle/users 

Single row queries form sensor data 
stream 

Real-time monitoring of traffic and travel 
time prediction 

Multiple rows aggregation from 
windowed data on stream 

Offline processing of historical/statistical 
sensor data 

Mining vehicle and user data Aggregation on batch data 

Hybrid processing of both historical and 
stream sensor data 

Over speeding vehicle discovery, Cloned 
license plate detection 

Single streaming rows comparison 
from statistical sensor data 

 
 
In order cater performance requirement of smart infotainment system applications, how to provide 

scalable and real-time processing support for massively large and continuous sensor data is becoming on 
essential issue in smart infotainment system. Novel methodologies are required to support abovementioned 
applications and to overcome underlying challenges. 

Challenges in designing sensor data processing system: To cope with above mentioned features and 
applications of sensor data, there exist challenges in designing a sensor data processing system that can 
process massively large sensor data in near real-time and handle different type of sensor data application. The 
challenges are summarized:. 
1. Firstly, management of both historical and stream sensor data, especially considering the massive volume 

of historical data and continuously arriving stream data. The sensor data is composed of different 
dimensions and needs to be transferred to different processing task of smart infotainment system. Some 
data may be shared across different applications. As a result lead to complexity in managing sensor data. 

2. Secondly, building of an integrated architecture to support online processing of stream data, offline 
processing of historical data, and hybrid processing of both stream and historical data. Since stream data 
is continuous and historical data is massive, they need to be segmented and fused for processing in 
distributed architecture in a coordinated manner. For example, to perform computation of clone plate 
vehicle identification, millions of historical records and stream data in speed of 10,000 records per 
seconds needs to be executed every second. 

3. Thirdly, there is increasing innovative smart application that depend on processing of sensor data. Some 
of these may be short-term applications. As a result, effective and simplified data inflow pattern of 
application and sensor data processing system are needed. 

The significant growth of BigData and cloud technologies has incurred significant challenges in 
network architecture in datacenter to process sensor data in real-time. In [2] adopted traffic engineering 
technique to address the bandwidth requirement of datacenter network. In [3] presented a data inflow 
prediction model by adopting rate control mechanism based on predicted traffic in network. Recently 
researcher have considered tight integration of application and network layer for optimizing network and 
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routing layer for predicting application traffic [4]. All these model requires prior understanding of application 
traffic in data center networks (i.e. the ability to forecast data inflow before packet arrives in network). 
However, it is difficult to predict data inflow of application accurate.  

All existing methodology [5] focused on predicting data inflow based on network level parameters 
using heuristic algorithm. For example, [5] computes data inflow using flow counter measurement on 
switches and [6] used socket buffer occupancy at each nodes to compute data inflow for each nodes. 
However, these methodologies have number of drawbacks. Firstly, most of them cannot predict the data 
inflow demand before data enter the network. Secondly, performance requirement identified on network path 
cannot accurately reflect the actual demand of application due to congestion control at end nodes and 
presence of noise of background flow. Thirdly, they fail to identify priority information and fine-grained data 
inflow dependencies imposed by applications. As a result, network-layer based approaches are shown to be 
performing poorly in predicting the real-time application demand [7], thus affecting system performance.  

Agent based forecasting model aid in achieving fine-grained performance for performing real-time 
analysis on social media and sensor data adopting MapReduce framework using cloud architecture [8], [9] 
and [10]. Hadoop framework [11] is a widely used MapReduce framework that adopts cloud platform. 
MapReduce framework is composed of two stage. In the initial stage, input data to be processed is 
fragmented into segments. Each segment is associated with a map computing worker that provides ⟨Key | 
Value⟩ pairs as outputs. The outputs obtained are sorted on the basis of the Key values associated. The sorted 
values are the input to reduce computing workers, that is, ⟨Key | Sorted List (Value)⟩. Reduce computing 
workers keeps the outcome in Hadoop distributed file system (HDFS). The map and reduce computing 
workers are generally virtual machines (VMs) in public cloud environments. A simple MapReduce model 
deployed on the VM based computing environment is shown in Figure 1. 

 
 

 
 

Figure 1. Architecture of MapReduce framework deployed on public cloud platform 
 
 

 In [8] presented agent based forecasting model to predict air pollution level across different region. 
To improve accuracy of prediction their model adopted artificial intelligence and to forecast shortest path 
Dijkstra algorithm. The perform analysis on real-time Hadoop MapReduce framework is adopted. However, 
they considered performance evaluation only for offline data. In [9] presented a hybrid model to process both 
stream and non-steam sensor data by adopting MapReduce framework. Their model achieves scalable 
performance over tradition open source streaming model Storm [12]. However, their model incurs computing 
overhead. As a result incur high cost of processing. To minimize cost [10] presented an agent based 
forecasting model on top of Hadoop. The model incurs slight overhead for application but at the reduction of 
computing time. Thus, reducing cost of computing. However, result presented in [13] shows adopting 
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Hadoop MapReduce for processing incurs computing overhead. Since, it does not fully utilize the resource 
available.    

To cope with research challenges in designing efficient real-time social media and sensor data 
processing and Data Inflow Forecasting (DIF) model, this work present an agent based data inflow 
forecasting model for both stream and non-stream (historical) data by using Multivariate Gaussian Mixture 
(MGM) model. To perform analysis on massively large social media and sensor data, this work adopt parallel 
computing framework. This work present an Agent based MapReduce (AMR) framework to process data in 
real-time and utilize system resource efficiently. To provide scalability for processing social media and 
sensor data AMR model adopts cloud computing architecture. 

The Contribution of research work is as follows: 
a) A novel Agent based model MapReduce framework is presented for data inflow forecasting. 
b) The proposed DIF-AMR support processing of stream, non-stream data and combination of both in real-

time. 
c) The DIF-AMR provides scalable processing by adopting cloud computing architecture. 
d) DIF-AMR utilize system resource efficiently and experiment outcome shows significant reduction in 

computing time.  
The rest of the paper is organized as follows. In section II the proposed agent based forecasting 

model is presented. In penultimate section experimental study is carried out. The conclusion and future work 
is described in last section. 

 
   

2. PROPOSED AGENT BASED FORECASTING MODEL   
This section present an efficient stream and non-stream data inflow forecasting model by adopting 

agent based MapReduce framework. The process of performing stream and non-stream data inflow 
forecasting model on agent based MapReduce framework consist of following steps:  
a) Data inflow predictor selection 

Data inflow predictor can be defined by Multivariate Gaussian Mixture (MGM) model, which is 
composed of numerous weighted Gaussian likelihood density model. The GM model with 𝒦 variables can be 
stated as follows: 

 

𝕃(𝒟|𝒢) = �𝛽𝓆ℓ𝓆�𝒟�𝛾𝓆�.
𝒦

𝓆=1

 
(1) 

 
where 𝒟 is the collection of data streams, ℓ𝓆 is the likelihood density for the 𝓆𝑡ℎ variable, 𝛾𝓆 is the qualifier 
specifier for the 𝓆𝑡ℎ variable, satisfying 𝛽𝓆 > 0, ∑ 𝛽𝓆 = 1𝒦

𝓆=1 , 𝒢 = (𝛽1, … ,𝛽𝒦 , 𝛾1, … , 𝛾𝒦) is the qualifier 
specifier set for GM model. 
b) Qualifier specifier approximation 

Expectation maximization algorithm is one of the extensively used methodology for qualifier 
specifier approximation. Expectation maximization algorithm aid in minimizing the complexity of maximum 
likelihood estimation. Expectation maximization algorithm is composed of two phases such as Expectation 
phase and Maximization phase. In Expectation phase the responding degree is computed using present 
qualifier specifier and in Maximization phase, qualifier specifier are updated based on responding degree. For 
one K-variable GM model, in which collection of data stream is 𝒟 = �𝒹1, … ,𝒹𝒥� and the qualifier specifier 
are 𝒢𝓅 = �𝜑𝓅, 𝛿𝑝�,𝓅 = 1, … ,𝒦, one iteration of the expectation maximization algorithm is expressed as 
follows: 
Expectation phase:  
 

𝕃�𝓅�𝒹𝓅,𝒢� =
𝑙�𝒹𝓆�𝒢𝓅𝒪� ∗ 𝛽𝓅𝒪

∑ 𝑙�𝒹𝓉�𝒢𝓅𝒪� ∗ 𝛽𝓅𝒪𝒦
𝓉

 
(2) 

 
Maximization phase:  
 

𝛽𝓅𝒩 =
1
𝒥
�𝕃�𝓅�𝒹𝓆,𝒢�
𝒥

𝓆=1

 
(3) 
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𝜑𝓅𝒪 =
∑ 𝒹𝓆 ∗ 𝕃�𝓅�𝒹𝓆,𝒢�𝒥
𝓆=1

∑ 𝕃�𝓅�𝒹𝓆 ,𝒢�𝒥
𝓆=1

 
(4) 

 

𝛿𝓅𝒪 =
∑ 𝕃�𝓅�𝒹𝓆,𝒢�𝒥
𝓆=1 ∗ �𝒹𝓆 − 𝜑𝓅𝒪� ∗ �𝒹𝓆 − 𝜑𝓅𝒪�

ℬ

∑ 𝕃�𝓅�𝒹𝓆 ,𝒢�𝒥
𝓆=1

. 
(5) 

 
The expectation maximization will stop if convergence condition is satisfied or predefined iteration 

is completed. The local data inflow for all node is obtained post completion/termination of expectation 
maximization algorithm.  
c) Global inflow prediction model 

In order to predict the global inflow of data stream, the local inflow of data stream obtained by 
expectation maximization algorithm should be pooled. For that firstly, the similarity among different local 
models is obtained. Secondly, the local models are classified. And lastly, the local models are pooled based 
on weight of each class to form global models. Let ℋ1, ℋ2 represent two local models, and the distance 
among them is computed as follows: 

 

𝒜(ℋ1,ℋ2) =
1

𝛽(ℋ1,ℋ2). (6) 

 
Where, 
 

ℬ(ℋ1 ,ℋ2) = � � 𝒥𝜑1𝓆∑1𝓆�𝒹�
+∞

−∞

𝓈

𝓆

∗ 𝒥𝜑1𝓆∑2𝓆�𝒹�𝓈𝒹 
(7) 

 
The similarity among two local models is considered to be high if two local models are close to each 

other. Then classification problem of local models can be stated as a minimum spanning tree problem, and 
can be addressed using [8]. Let the weight of local models be expressed as: 
 

𝛽𝓅,𝒦 = �𝛽1, … ,𝛽𝒿�, (8) 
 
Covariance matrix of local models is expressed as: 
 

𝛿𝓅,𝒦 = 𝛿1, … , 𝛿𝒿, (9) 
 
And average value of local models is expressed as: 
 

𝜑𝓅,𝒦 = �𝜑1, … ,𝜑𝒿�. (10) 
 
Then to identify which set the model ℋ𝓆 belongs to is expressed by following function 
 

𝒯 = �ℋ𝓆 ,𝓇� = �
1, ℋ𝓆 ∈ ℋℛ   
0, ℋ𝓆 ∉ ℋℛ .  

(11) 

 
Let consider a set of data stream for local model ℋ𝓆  be 𝛼�ℋ𝓆�. If data stream size of local models are not 
equal, the weight of global models can be computed as: 
  

𝛽𝓇 =
∑ 𝛽 ∙ 𝛼�ℋ𝓆� ∙ 𝒯�ℋ𝓆 ,𝓇�𝑗
𝑞=1

∑ 𝛽 ∙ 𝛼�ℋ𝓆�
𝑗
𝑞=1

, 
(12) 

 
The covariance matrix of global models is computed as: 
 

𝜑𝓇 =
∑ 𝛽𝓆 ∙ 𝛼�ℋ𝓆� ∙ 𝛿𝓆 ∙ 𝒯�ℋ𝓆 ,𝓇�𝑗
𝑞=1

∑ 𝛽𝓆 ∙ 𝛼�ℋ𝓆�
𝑗
𝑞=1 ∙ 𝒯�ℋ𝓆 ,𝓇�

, 
(13) 
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The average value of global models is computed as: 
 

𝜑𝓇 =
∑ 𝛽𝓆 ∙ 𝛼�ℋ𝓆� ∙ 𝜑𝓇 ∙ 𝒯�ℋ𝓆 ,𝓇�𝑗
𝑞=1

∑ 𝛽𝓆 ∙ 𝛼�ℋ𝓆�
𝑗
𝑞=1 ∙ 𝒯�ℋ𝓆 ,𝓇�

 
(14) 

 
d) Agent based MapReduce model 

The proposed agent based MapReduce model is composed of following agent as shown in Figure 2. 
 
 

 
 

Figure 2. Architecture of proposed Agent based MapReduce (AMR) Model 
 
 

File/Stream Read Agent: here the client system (File/Stream Read Agent) read a text file/stream 
data and sends each line of text as message to the Client Agent. 

Client Agent: the Client Agent has the reference to the Remote Agent (MapReduce Agent) and the 
message is passed on the Remote Agent. 

Server/MapReduce Agent: the Server/MapReduce Agent gets the message from the Client Agent. 
The Agent uses Priority Specifier to select the priority of the message and filters the queues accordingly. The 

Priority Specifier is used to segregate the message among the MapReduce requests and retrieving 
the list of outcomes (OUT_LIST) message from the Aggregator Agent.  

MapReduce Agent: sends across the message to the Map Agent for mapping the words. This Map 
Agent uses Round Robin Router dispatcher. After mapping the words, the messages is sent across to the 
Reduce Agent for reducing the words. Similar to Map Agent the Reduce Agent also uses Round Robin 
Router dispatcher. The reduced results are sent to the Aggregator Agent that does an in-memory aggregation 
of the result. 
e) Agent based MapReduce implementation of data inflow forecasting model 

This section present the detail implementation of data inflow forecasting on agent based MapReduce 
framework. Firstly, the data stream should be routed into one directed graph, in which arcs represent number 
of lines and the vertices represent number of files. Each arc is represented using two things, the total volume 
and present load of the streams/files, which are derived from different computational application studies. 
Firstly, we input the data that holds an arc of the graphs and its content. Then the Map operation produces 
two contents for each arc data, one keyed under each of the vertices that form the arc. The value each record 
possess augmenting flow 𝔸 and path. Each 𝔸 is equal to total volume minus present load. Post completion of 
Map operation, a sequence of containers are created, each container possess records for each arc adjacent to 
its corresponding/neighbouring vertex. In Reduces stage, records with same key generated in Map stage are 
cumulated by performing shuffle and sort operation to search the path and compute 𝔸. Post completion of 
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reduce operation, all the 2-distance paths among paths/node pair are generated. Again the output of previous 
reduce operation and the raw arc is combined to form input and perform iterative computation. Similarly, the 
Map operation produces sequences of records and records with same key are send to a specific reduce 
worker. Post completion of Map phase, all 3-distance paths and 𝔸 are computed. Similarly, the process is 
repeated. The iteration process is carried out until output of two reduce functions are same. This means 𝔸 and 
paths among each node pair are enclosed in all the output produced by each round decrease. All we need to 
do is to sort these outcomes by 𝔸 and node pair. 

In next section experiment are conducted to evaluate the performance DIF-AMR over exiting model 
considering different experiments. 

 
 

3. RESULT AND ANALYSIS 
This section describes the experimental analysis of proposed Data Inflow Forecasting AMR (DIF-

AMR) performance achieved over exiting model [10]. The DIF-AMR is implemented using C#, Dot Net 
framework 4.5 and deployed on Microsoft Azure Cloud computing platform.  
a) Word frequency detection computation 

The DIF-AMR framework is deployed on D3 VM instance composed of 4 virtual computing cores, 
14 GB RAM and 200 GB local SSD hard drive space. The DIF-AMR framework is deployed on Microsoft 
azure cloud computing platform composed of one master nodes and four virtual computing nodes to perform 
map and reduce operation which runs on Windows Server 2012 R2 operating system. HDInsight  
cluster [14], [15] is considered for exiting model on Microsoft azure cloud computing platform. Identical 
computing platform and configuration is considered for both proposed and existing model. The word 
frequency statistic application is developed using C# programing language and Dot.net framework 4.5. And 
for existing Hadoop based model it is designed using Java programing language. The Wikipedia dataset [16] 
is considered for experiment analysis. The Wikipedia dataset is huge in size (i.e. >100 GB) and is split into 
512 MB each and stored in Azure cloud container. For experimental analysis this work consider 8GB of data. 
The word frequency statistics applications were executed on the DIF-AMR and existing Hadoop 
deployments and the results obtained are noted. 

The Map operation computation time at each computing node is noted and result obtained are shown 
in Figure 3. From result obtained it can be seen that DIF-AMR achieves faster execution time than exiting 
model. Reduce operation computation time at each computing node is noted and result obtained are shown in 
Figure 4. From result obtained it can be seen that DIF-AMR achieves faster execution time than exiting 
model. From result obtained it can be seen that FIF-AMR exhibits faster computation time than existing 
Hadoop based model [10]. The average computation time of Map and Reduce operation computation time is 
noted and is shown in Figure 5. The computation time of Map operation is reduced by 8.16% by DIF-AMR 
over existing model. The computation time of Reduce operation is reduced by 85.23% by DIF-AMR over 
existing model. The total computation time for performing work frequency statistics computation on Azure 
cluster is shown in Figure 6. The computation time of map phase considering DIF-AMR is 100.29 seconds 
and for existing model is 198.0 seconds. The computing time reduction of 49.34% and 43.36% is achieved by 
proposed DIF-AMR over existing model for Map and Reduce operation respectively. The total computation 
time of map phase considering DIF-AMR is 107.05 seconds and for existing model is 210.0 seconds. The 
total computing time reduction of 49.023% is achieved by proposed DIF-AMR over existing model. 

 
 

 
 

Figure 3. Map operation computation time on worker nodes 
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Figure 4. Reduce operation computation time on worker nodes 
 
 

 
 

Figure 5. Average computation time on worker nodes on Map and Reduce phase 
 

 

 
 

Figure 6. Computation time performance evaluation considering DIF-AMR and existing model 
 
 
b) Hot-Word detection computation 

The DIF-AMR framework is deployed on D3 VM instance composed of 1 virtual computing cores, 
14 GB RAM and 200 GB local SSD hard drive space. The DIF-AMR framework is deployed on Microsoft 
azure cloud computing platform composed of one master nodes and four virtual computing nodes to perform 
map and reduce operation which runs on Windows Server 2012 R2 operating system. HDInsight  
cluster [14], [15] is considered for exiting model on Microsoft azure cloud computing platform. Identical 
computing platform and configuration is considered for both proposed and existing model [17]. The hot-word 
detection algorithm [18] is developed using C# programing language and Dot.net framework 4.5.  
And for existing Hadoop based model it is designed using Java programing language. The “Movietweetings” 
dataset [19] is considered for experiment analysis and stored in Azure cloud container. Tweets consisting of 
25000, 50000, 75000 and 100000 movies is considered and is represented as 25K, 50K, 75K and 100K. The 
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hot-word detection algorithm were executed on the DIF-AMR and existing Hadoop deployments and the 
results obtained are noted. The total computation time of DIF-AMR and existing model is noted and is shown 
in Figure 7. Experiment analyses shows as number of tweets increases the computation time of both DIF-
AMR and existing model increases. The computation performance improvement of DIF-AMR over existing 
model for 25K is about 10.6%, for 50K is about 16.69%, for 75K is about 58.41% and for 100K is about 
57.98% is achieved. An average computation performance improvement of 46.94% is achieved DIF-AMR 
over existing model. Based on the results obtained in the hot word detection algorithm it can be concluded 
that the DIF-AMR model exhibits lower computation time when compared to the existing model.  

 
 

 
 

Figure 7. Computation time performance evaluation considering DIF-AMR and existing model 
 
 

HDInsight cluster [14], [15] is considered for exiting model on Microsoft azure cloud computing 
platform. Identical computing platform and configuration is considered for both proposed and existing 
model. The hot-word detection algorithm [18] is developed using C# programing language and Dot.net 
framework 4.5. And for existing Hadoop based model it is designed using Java programing language. The 
“Movietweetings” dataset [17] is considered for experiment analysis and stored in Azure cloud container. 
Tweets consisting of 25000, 50000, 75000 and 100000 movies is considered and is represented as 25K, 50K, 
75K and 100K. The hot-word detection algorithm were executed on the DIF-AMR and existing Hadoop 
deployments and the results obtained are noted. The total computation cost of DIF-AMR and existing model 
is noted and is shown in Table 2. Experiment analyses shows as number of tweets increases the computation 
cost of both DIF-AMR and existing model increases. The computation cost improvement of DIF-AMR over 
existing model for 25K is about 32.67%, for 50K is about 37.34%, for 75K is about 63.05% and for 100K is 
about 62.23% is achieved. An average computation cost improvement of 48.82% is achieved DIF-AMR over 
existing model. Based on the results obtained in the hot word detection algorithm it can be concluded that the 
DIF-AMR model exhibits lower computation cost when compared to the existing model. 

 
 

Table 2. Cost computation using DIF-AMR technique 
Number of Twitter Feeds Cost computation ($) 

Existing       DIF-AMR 
Improvement (%) 

25K  0.4291          0.2889 32.67 
50K 0.8460           0.5301 37.34 
75K 1.5275           0.5644 63.05 
100K 1.6711           0.6311 62.23 

 
 

In this section the execution of the imprecise applications namely word frequency statistics and hot 
word detection is presented. The results presented here prove that the DIF-AMR model reduces the 
computation time observed due to the novel agent based parallel computation method incorporated.  
An average reduction of 49.02% for word frequency statistics and 46.94% for the hot word detection is 
reported considering the DIF-AMR model when compared to the existing model [10]. The cumulative 
analysis over state-of-art technique in Table 2 shows the efficiency of DIF-AMR over state-of-art technique 
in terms of robustness and scalability. Since, DIF-AMR support parallel processing of stream and non-stream 
data by adopting MapReduce framework. Adoption of agent based computing aid in fully utilizing system 
resources. Support accurate processing of all type of data shows robustness of DIF-AMR. Adoption cloud 
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platform aid in proving scalability of processing of large amount of data of various types on large computing 
clusters. All these feature attributed to the performance improvement of DIF-AMR over existing model, 
shown in Table 3.  

 
 

Table 3. Comparison with state of art technique 
      [8] [9] [10] DIF-AMR 
MapReduce platform considered Hadoop Storm Hadoop Custom 
Agent based Yes No Yes Yes 
Cloud adopted Yes Yes Yes Yes 
Non-stream data processing support Yes Yes Yes Yes 
Stream data processing support No Yes No Yes 
Hybrid processing support No Yes No Yes 
Forecasting accuracy Yes No Yes Yes 

 
 
4. CONCLUSION 

 The main contribution of this work is presenting an agent based scalable stream and non-stream 
processing of social media and sensor data using MapReduce framework. Efficient data inflow forecasting 
model adopting MapReduce and cloud platform is presented. Multivariate Gaussian Mixture (MGM) model 
is designed to improve the accuracy of forecasting for both stream and non-stream data. DIF-AMR 
overcomes the limitation of state-of-art technique in terms of computation overhead which are experimental 
proven. Experiment are conducted to evaluate the performance of proposed DIF-AMR over state of art-
technique in terms of computation time considering different experiment such as word frequency statistic 
prediction and hot word detection. Experiment outcomes shows DIF-AMR improves computation time by 
49.02% over existing model for word frequency statistics and 46.94% for hot word detection. The experiment 
outcomes shows significant performance improvement of DIF-AMR over exiting model in terms of 
computation time considering execution on cloud platform for relatively large stream and non-stream data. 
Thus DIF-AMR is scalable irrespective of data size and computing cluster size. 

The future work would consider performance evaluation considering large dataset and also consider 
security provisioning for computing data on cloud platforms. This work would further consider optimization 
of MapReduce scheduler for further reduction of computation time. 
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