
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 11, No. 3, September 2018, pp. 925~935 

ISSN: 2502-4752, DOI: 10.11591/ ijeecs.v11.i3.pp925-935      925 

  

Journal homepage: http://iaescore.com/journals/index.php/ijeecs 

Discrete Chicken Swarm Optimization for the Quadratic 

Assignment Problem 
 

 

Soukaina Cherif Bourki Semlali
1
, Mohammed Essaid Riffi

2
, Fayçal Chebihi

3 

1LAMAPI Laboratory, Department of mathematics, Faculty of Sciences, 

University of Chouaib Doukkali, El Jadida, Morocco 
2,3LAROSERI Laboratory, Department of Computer Sciences, Faculty of Sciences, 

University of Chouaib Doukkali, El Jadida, Morocco 

 

 

Article Info  ABSTRACT  

Article history: 

Received Nov 14, 2017 

Revised Jan 8, 2018 

Accepted May 26, 2018 

 The quadratic assignment problem (QAP) is a well-known combinatorial 

optimization problem, which could be applied to different applications. The 
main objective of this paper is to present the first discretization of the 

chicken swarm optimization algorithm (CSO) to solve quadratic assignment 

problem without using a local search, the adaptation of CSO in discrete case 

is based on redefining operations and operators of the original version. As 

known, the CSO is a stochastic method inspired from the behavior of 
chickens in swarm while searching for food. The experiments are performed 

on a set of 56 benchmark QAPLIB instances. To prove the choice of the 

adequate parameters, a study is conduct on CSO using simulations on certain 

instances. The discussion of different tests obtains competitive results 

compared with the known metaheuristic of Genetic algorithm based on SCX. 
The results demonstrate effectiveness of the proposed CSO-QAP to solve the 

quadratic assignment problem in term of time and quality of solutions. The 

proposed adaptation can be further applied by using a local search strategy 

such as 2-opt in order to solve the same problem or another NP-hard 

combinatorial problem. 
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1. INTRODUCTION  

Combinatorial optimization occupies an important place in discrete mathematics and computer 

science, although the combinatorial optimization problems are often easy to define, but they are generally 

difficult to solve. Indeed, most of these problems belong to the class NP-hard such as Scheduling Workflow 

in Cloud Computing [1], Traveling Salesman Problem [2] and job shop scheduling problem (JSSP) [3]. 

Therefore, NP-hard problems don‟t have an effective solution for all the data, then we need to define a formal 

framework for many industry in science, engineering and business. In this work, we intend to discuss one of 

the most interesting combinatorial optimization problem used  in the plant layout in order to determine the 

interaction and the distance between two facilities. The aim of the quadratic assignment problem is to fix the 

most effective arrangement of departments within the plant when the flow between departments remains 

constant during the horizontal planning. QAP is a classical NP-hard problem [4] in which it is necessary to 

find the optimal placement of n objects by taking into account both the cost of allocation of an equipment and 

its interaction with other equipments. In the field of location science, many practical problems can be 
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formulated as quadratic assignment problems (QAP) such as the study of Burkard [5] which applied the 

heuristic procedure proposed by Metropolis et al [6] and the approach of Laporte and Mercure [7], which 

used the problem of balancing hydraulic turbine runners . 

Many methods were adapted to solve the quadratic assignment problem, among these adaptations 

are metaheuristics. Metaheuristic is a technique that seems to fit with the structure o f any problem. Such as 

simulated annealing by MR Wilhelm in 1987 [8], the taboo search [9], the genetic algorithm [10], the greedy 

genetic algorithm [11], the ant colony algorithm [12] and Hunting Search Algorithm [13]. 

The Swarm optimization algorithms offer a new approach to solve several combinatorial optimization 

problems in engineering and computer sciences. These algorithms are proposed by mimicking the 

intelligence and the behaviors of the population in nature, such as ant colony optimization algorit hm  

(ACO) [14], bee colony optimization [15], artificial bee colony algorithm (ABC) [16], bat -inspired  

algorithm [17], Particle Swarm Optimization (PSO) [18], spider monkey [19], firefly algorithms [20] and 

cuckoo search [21]. 

This paper applied the Chicken swarm optimization (CSO) which is an algorithm that simulates the 

behaviors of the chicken swarm. The CSO can effectively harness the intelligence of a chicken swarm to 

solve practically the quadratic assignment problem. The proposed adaptation of CSO is the first discretization 

of the chicken swarm optimization algorithm (CSO) to solve quadratic assignment problem, the new 

approach of CSO in discrete case is based on redefinition of operations and operators in order to to solve the 

most of QAPLib instances. 

This paper is organized as follows: In the second section, we describe the quadratic assignment 

problem. In the third section, we present the metaheuristic used in this work to solve the QAP. Then, in the 

fourth section, we provide many simulations to justify the choice of parameters used and the results obtained 

of this contribution. Finally, in the last section, we close this paper with a conclusion. 

 

 

2. QUADRATIC ASSIGNMENT PROBLEM 

The management of a plant had long been a field of research, as a resu lt, several approaches are 

developed over the years, but the resource allocation problem is still present. There are different formulations 

to solve the problem of facility management. One of the simple formulations to be modeled is the quadratic 

assignment problem (PAQ). Considered as one of the great challenge in combinatorial optimization, 

Quadratic Assignment Problem is introduced in the first time by koopmans and beekmann in 1957 [22]. The 

QAP can be reformulated into many combinatorial optimization problems such as the graph partitioning 

problems and the Travelling Salesman Problem [23]. 

The idea is to set two matrices of size (n,n), given as A = (a ij) which refers to the flows between 

pairs of facilities and  ( ) ( )i jB b  for the distance of their locations. After the aforementioned 

descriptions, the purpose of this approach is to find a *  permutation among a set  n of permutations, 

which minimizes the cost allocation of facilities into locations, the mathematical formulation is given as 

follows: 

 

  ( ) ( )1 1
(*) min

n n

ij i ji j
C a b     

                       (1) 

 

 

3. CHICKEN SWARM OPTIMIZATION 

The Chicken swarm optimization (CSO) is a stochastic algorithm inspired by the behaviors of a 

chicken swarm; and introduced by Meng, X.B. And al. [24]. The chicken swarm is divided into several 

groups; each group comprises one dominant rooster and many hens and chicks. Each type of chicken follows 

different movements. 

The roosters, hens and chicks are identified by the fitness  value of the chickens themselves. The 

chickens with the best fitness values would be designated to act as roosters or the leader of the group, they 

could search for food in a wider range of space,then they would be followed by the others chickens .  

The chickens with the worst fitness values would be referred as chicks, which could seek for food 

around their mother. The others would be the hens, which randomly choose their groups and establish a 

mother-child relation with chicks. The two relations of dominance and mother-child between the hens and the 

chicks are all updated after few generations ,a parameter G is used to indicate the number of time steps, if 

 2;20G then the algorithm could give a good results and could easily fall into a local optimum, otherwise 

these statuses remain unchanged. 
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In a combinatorial optimization problem, the position of each chickens represents a solution. The 

roosters with the best fitness values are the most dominants and they could search for food in a wide r range 

of space, therefore they have priority to access to food than the hens with lower fitness values, which are 

unstrained to eat food. On the other hand, Chicks move around their mothers to get food. 

In [24] the number of roosters, hens, chicks and mother hens, depicted by RN, HN, CN and MN, 

respectively. The problem is solved in a D-dimensional space, xti;j stands the positions of all the N chickens 

at time step t while searching for food. 

The position update equation of the rooster can be formulated as: 

 
1 2

, , (1 (0, ))t t
i j i jx x Randn                                      (2) 

 

 

2
( )

| |

1,

exp , 1, ,
k i

i

i j

f f

f

if f f

otherwise k N k i


  
 

 




 
  

                  (3) 

 

Where 

-
2(0, )Randn  is a Gaussian distribution,

2 is a standard deviation. The rooster index k is randomly 

selected from the rooster‟s group, and f is the fitness value of the corresponding x. 

The hens can follow their group leaders to forage for food; furthermore, they may randomly locate and steal 

the good food found by other chickens. These situations can be represented as below: 

 
1

, , 1, , 2, ,1 ( ) 2 ( )t t t t t t
i j i j r j i j r j i jx x S Rand x x S Rand x x            (4) 

 

As   

( 1)

(| | )
1

i r

i

f f

f
S e



 
 

     And 2( )2 r if fS e   

 

Where Rand is chosen randomly from [0, 1], r1 and r2 are two index 1 2r r , the first is the index of the 

rooster otherwise the second is the index of a random chicken from the swarm (rooster or hen). 

At last, the position update equation of the chick is formulated in [24] as follows: 

 
1

, , , ,( )t t t t
i j i j m j i jx x FL x x            (5) 

 

Where  1,m N  is the index of the chick‟s mother and  0,2FL  is a randomly selected parameter to 

refer to the relationship between the chicks and its mother.  

As the chicks only learn and get position from their mothers, they will easily fall into the local 

optimum as their mothers. In 2015, Dinghui Wu [25] added to the position update equation of the chicks two 

factors, the first one is the learning factor C which means that the chicks could get information from the 

rooster, the second one is W a self-learning coefficient for the chicks. The new equation is modified as 

follows: 

 

 1

, , , , , ,( )t t t t t t
i j i j m j i j r j i jx W x FL x x C x x              (6) 

 

Where r is the index of the rooster and m is the index of the mother. 

 

 

4. DISCRETE CSO ALGORITHM FOR QUADRATIC ASSIGNMENT PROBLEM 

After observing each individual in the chicken swarm, it was found that the chicken has a capacity 

for communication and ability to learn, thus there is a strict hierarchical order, which can be used to model a 

new stochastic bio-inspired algorithm in order to solve many discrete optimization problem. 

In the beginning, the swarm must be structured by declaring a population, its parameter 

configuration is simple, the fixed identities for each individual is defined after indicating the number of 

roosters, hens and chickens; then the hierarchical order between the identities of the chickens and the 

relations between the mother-child‟s are established; And finally, a certain parameter G must be fixed to 
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regularly update the relations in the chicken swarm so that the problem of falling into a local optimum is 

avoided. 

Each chicken is represented by position, which is surrogated by a vector of N facilities assigned to 

locations, thereby a chicken can search food in a set of solutions S (the search space), and the position of a 

“selected chicken” is the current solution. The purpose of the discretization is to obtain the position of the 

chicken, which provide the minimum of the objective function :f S . 

This section describes a new adaptation of the original CSO algorithm; CSO-QAP is established by 

the redefinition of the operators and the operations of CSO (Figure 1 and 2). 

 

4.1. Initialize the population 

In this first part, after reading the instances of the QAPLIB, the algorithm begins with the creation 

of an initial population P of N elements randomly selected among p existing permutation of the search space, 

which contains all the possibilities (where  1 !

2

n
p


 ). 

Each possibility is obtained by assigning a facility to its location, and then it is represented by an 

array of integer of size n where each integer is an index that refer to the facility‟s location. The following 

example is a simple example of a QAP solution that represents an assignmen t of 6 installations to 6 locations; 

the solution (the table of array) represents a chicken in a known position. 

 

 
 

Figure 1. Example of Assigning Facilities to 

Locations in QAP 

Figure 2. Movement of a Chicken in CSO 

 

 

 

4.2. Establish the Hierarchical Order 

The selected population is sorted and ranked after evaluating the fitness value of each individual, 

then a hierarchal order in the swarm is established, the chickens with the minimum fitness values are 

designated as the roosters, the number of the roosters, the hens, the chicks and the mother hens depicted by 

RN, HN, CN and MN. 

The number of roosters can be expressed by the Equation 7, the number of hens by the Equation 8, 

otherwise the number of chicks is calculated by the Equation 9, an index is ass igned to each type 1, 2 and 3 

for the roosters, hens and chicks respectively. 

 

RN N rp                                                   (7) 

 

HN N hp                                                (8) 

 

( )CN N RN HN                                   (9) 

 

Where rp is the proportions of roosters and hp is the proportions of hens. MN represents the number of 

mother hens, it could be calculated by 10, and furthermore we assign to each mother a random id: 

 

MN HN mp                                                   (10) 
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The sizes of RN, HN, CN and MN directly determine the structure of the swarm, which affect the 

performance of CSO to solve QAP. 

 

4.3. Create groups 

The swarm is randomly divided into different groups according to the proportions obtained at the 

beginning of the algorithm, the number of groups is equal to number of roosters, we assign rand omly to each 

mother an id hence the relationship between chicks and mother hens is scheduled indiscriminately in  

each group. 

After G iterations, a redistribution of the swarm is required, in order that the roosters find the best 

solution of the swarm and the other individuals could move towards these solutions until the optimum is 

found. 

 

4.4. The movements of a chicken 

In this adaptation, a movement of a given chicken is represented by the permutation of two of its 

matrix elements. An example of a permutation is described as follows: 

There are three types of chickens (roosters, hens and chicks), each one moves in a structured way 

according to a hierarchy defined in the previous sections. Thus, three types of movements are possible; each 

one is characterized by a set of operations and operators. During the discretization, we defined a set of 

operators, which are ⊕ ⊖ and ⨂ as follows: 

 

4.4.1. Subtraction operation ⊖   

xi ⊖ xj Represents a list of possible permutations applied for solution xi to obtain solution xj For 

example : xi= 1 2 3 4 5 6 7 8 and xj = 1 8 4 2 7 6 5 3 then xi ⊖ xj= (2; 8)(5; 7)(2; 3)(2; 4). 

 

4.4.2. Multiplication operation ⨂  

This operation means that a random number of permutation is chosen between 0 and 1 in order to 

apply it to an operation. For example: R=0,5 and  xi ⊖ xj = (2; 8)(5; 7)(2; 3)(2; 4). Then R⨂ (xi ⊖ xj) = 

(2; 8)(5; 7). 

 

4.4.3. Addition operation ⊕    

This operation indicates that the randomly chosen permutation is applied to move from solution i to 

the new solution j. For example: S1= 1 2 3 4 5 6 7 8 and R⨂ (xi ⊖ xj) = (2; 8) (5; 7) then xj= 1 8 3 4 7 6 5 2 

 

4.4.4. The neighborhood  

In the continuous formula of QAP, the objective is to find a permutation p of n elements that 

minimizes the Equation 1, which uses the fitness value in order to evaluate the solutions. On the other hand, 

in the discrete concept, we can use another approach to say that a solution is close to another neighboring 

permutation, then the differences between the solutions instead of the neighborhood by the fitness value.  

 

4.4.5. Rooters movement: 

In order to explain why the rooster with the better fitness value can seek for food in a larger space 

,the best roosters will have the opportunity to do more permutations until it find a better solution than the one 

with less fitness value, allowing to search in a wider neighborhood. For that reason, we redefine the operation 

represented in Equation 2 by the Equation 11 as:       

 
1 2(0, )t t t

i i ix x Randn x                                     (11) 

 

In another way, a rooster makes a self-permutation and Randn defines a random percentage of 

permutations between 0 and 
2  to be chosen in order to apply it in the current solution (Rooster „position). 

Let‟s in the example as below 
t
ix be the current rooster and 

1t
ix 

 is the new solution then

20%Rand  ,furthermore the current Rooster move to the position 
1t

ix 
.The value of the parameter Randn 

is proportional to that of 
2 where 

2 = exp(diff) and diff is the percentage of difference between solutions, 

thus the more the differences persist between the current rooster and that of the new position, the more the 

probability of applying permutations increases exponentially, which means that the rooster with better fitness 

values can go to the new position by applying more permutations that is to say search in a wider range of 

space and the value of Randn is chosen randomly between [0,1] ,while for the other roosters of the swarm, 

the value is chosen randomly between 0 and a number less than 1. 
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4.4.6. Hen’s movement 

It is necessary to take into consideration that hen‟s solution must be different to the dominant 

rooster, otherwise in the iterations that follow a sets of roosters will move into the same positions, then the 

search space will be limited. The equation of hens is redefined as follows: 

 
1

1 21 ( ) 2 ( )t t t t t t
i i r i r ix x S Randn x x S Randn x x      ! !             (12) 

 

The first part of the Equation 12 represents the movement of hens following their leader of group 

with a well-defined probability; the second part means that hens could randomly steal food from other 

chickens (roosters or hens). 

 

4.4.7. Chicks mouvement 

In this adaptation, the movement of the chicks is divided into 3 steps, firstly the chicks will use a 

self-improvement operation to search for better solutions, then the chicks will look for food by learning from 

their mothers which means that the chicks will have more probability of resemblance between the chicks and 

their mothers. Finally, the chicks will use the same concept to look for the solution of the dominant rooster. 

The equation of hens is redefined as follows: 

 
1 ( ) ( )t t t t t t

i i m i r ix W x FL x x C x x      ! !              (13) 

 

Where W is a parameter of self-learning, FL is a learning-Factor, which means that the chick learns from its 

mothers and C is a learning factor a parameter of resemblance between the chicks and their dominant rooster, 

which means that the chick could learn from of the roosters too. 

 

4.5. Discrete CSO Algorithm CSO-QAP  

The CSO-QAP in pseudo-code for optimizing the QAP is summarized as follows: 

 

 
Discrete Chicken swarm optimization algorithm 

1. Initialize the size of chicken population 
2. Generate a random population of N chickens 
3. Initialize the algorithm‟s parameters: N the number of chickens in the 
swarm, Rand, r1 is an index of rooster; r2 is an index of chickens, FL, C 

and w. 
4. Evaluate the fitness values at t=0 for each chicken (save the global 
best solution) 
5. Rank the chickens and establish a hierarchal order in the swarm 

6. Randomly divide the swarm into different groups 
7. Determine the relationship between the chicks and the mother hens in 
a group. 
8. Find a new solution by updating the position of each rooster, hens and 

chicks using the new equations. 
9. Update the new solution when it  is better than the previous one.  
10. Return to step 5 if G is reached until the maximum number of 
iterations is checked in. 

11. Return results and visualization 

 

 

5.  EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the new algorithm is evaluated by the computational experiments were 

performed on the QAP instances extracted from QAPLIB and tested 20 times in 100 iterations for each 

instance. The algorithm was implemented on a DELL in visual studio 2017 using the programing language 

C# and simulated with Intel(R) Core(TM) i7-6500 U CPU 2.5GHZ (4 CPUs) 2.6 GHz and 16.00 GB of 

RAM and Microsoft Windows 10 Professional (64-bit) operating system. 

 

5.1. Benchmark instances  

In order to evaluate the performance of our new algorithm, we test it on well-known benchmark 

instances of QAPLIB [26], we choose a set of 56 different instances among the 135 instances from the 

QAPLIB, then we compare its results with those of the existing methods in literature, the size of each 

instance is indicated in the instance name. There are many types of instances interpreting and des cribing 

several real and random problems. The first type is the instances obtained from a practical QAP applications 
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Real-life instances, the second is the randomly generated instances with a structure similar to real life 

instances, the third are Grid- based distance matrix instances and finally those in which the distances are 

calculated by the Manhattan distance. 

 

5.2. Parametric analysis  

In order to choose the optimum parameter values, we execute several tests on chr12a and bur26a. As 

shown in Figure 3, the optimal size of the chicken swarm should be N=500, which provide a better 

compromise between average of BFS and average of time for each run of the instance bur26a. Otherwise 

G=2 guarantees convergence of the algorithm, it may achieve a good results in minimum average time as 

represented in Figure 7 of the instance chr12a, this value ensures the robustness of the algorithm and 

guarantees the redistribution of the swarm. 

The number of roosters, hens and chicks could affect the results; we can observe that the percentage 

of roosters must be greater than the percentage of hens as the percentage of chicks to ensure faster 

convergence. In Figure 4 RN should represent 10% of the population with a percentage of 21% for the hens 

as appears in Figure 5, while the rest of the swarm will be chicks respecting that CN=N-RN-HN, then 

CN=69% in Figure 6. We note that the gap between 63 and 72 gives better results for the average of BFS and 

the average of time. The movement of the roosters preserves the exploration; on the other side, the movement 

of hens and chicks performs the exploitation operations. 

Moreover ,as shows in Figure 10, the average of BFS decreases when the self-learning parameter W 

is between 0.4 to 0,6, then we found that for W=0.5, the chicks could search for the solution in a larger range 

of space which avoid the problem of falling into local optimal. Furthermore FL is a randomly chosen number 

between 0,4 and 1, it allows that the chick could learn from the mother which ensure the robustness of the 

algorithm, in Figure 8 we set the parameter FL=0.4. Eventually the chicks could also learn from the leader of 

the group using a learning factor C for better results C=0.7 in Figure 9 which guarantees the optimal balance 

of intensification and diversification for our metaheuristic. 

 

 

Table 1. The Parameters values for CSO-QAP 
Parameters Values 

N (population size) 500 

RN (Number of roosters) 10% 
HN (Number of hens) 21% 

CN (Number of chicks) 69% 

G (Number of tours to update 
the algorithm) 

2 

C (Rooster learning factor) 0,7 

FL (Hens learning factor)  0,4 
W (self-learning factor) 0.5 

 

 

 
 

Figure 3. The average time while varying the 

population size 

 
 

Figure 4. The average time and the average BFS while 

varying RN 
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Figure 5. The average time and the percentage of 

ERR while varying HN 

 

 

 
 

Figure 6. The average time and the average of BFS 

while varying CN 

 

 
 

Figure 7. The average of BFS while varying the 

number of iterations G 

 
 

Figure 8. The average of BFS while varying the 

learning-factor FL 

 

 

 
 

Figure 9. The average of BFS while varying the 

learning-factor C 

 

 

 
 

Figure 10. The average of BFS while varying the 

learning-factor W 

 

 
 

Figure 11. Comparison of the percentage ERR of 

CSO-QAP and SCX 

 
 

Figure 12. Comparison of the average time of CSO-

QAP and SCX 
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Table 2. Results Obtained By Applying Cso-Qap to Some Qaplib Instances 

Num instance Sopt BFS avg  Tbest(s) Tavg (s) ERR (%) PSD 

Succ 

(%) 

1 bur26a 5426670 5426670 5432472,35 8,79 10,38 0,106922846 0,054008614 5 
2 bur26b 3817852 3817852 3821399,6 5,47 9,41 0,09292136 0,103166591 20 

3 bur26c 5426795 5426795 5427660,7 6,67 9,89 0,015952325 0,012423555 15 
4 bur26d 3821225 3821239 3821555,25 9,55 10,02 0,008642516 0,007208045 0 
5 bur26e 5386879 5386879 5387692,05 7,86 10,26 0,015093155 0,0083552 5 

6 bur26f 3782044 3782044 3782358,25 6,14 9,65 0,008308999 0,009348965 25 
7 bur26g 10117172 10117172 10118484,4 7,72 9,73 0,012972004 0,006476502 5 
8 bur26h 7098658 7098658 7099200,15 7,85 9,54 0,007637359 0,005324074 15 
9 chr12a 9552 9552 9651,8 0,26 1,12 1,04480737 2,099305098 80 

10 chr15a 9896 10136 10746,3 2,99 3,12 8,59236055 3,32365169 0 
11 chr15b 7990 7990 8682,5 1,67 2,93 8,667083855 6,727127302 30 
12 chr18a 11098 11118 12990 4,31 4,67 17,04811678 6,405078609 0 
13 chr20c 14142 14142 17212,9 5,54 6,09 21,71475039 11,69088172 5 

14 chr25a 3796 4254 4835,1 9,19 9,4 27,37355111 4,756638722 0 
15 els19 17212548 17212548 17521363,1 2,08 4,74 1,794127749 1,782569324 25 
16 esc16a 68 68 68,2 0,05 1,14 0,294117647 0,879765396 90 
17 esc16b 292 292 292 0,04 0,08 0 0 100 

18 esc16c 160 160 160 0,15 0,59 0 0 100 
19 esc16d 16 16 16 0,14 0,81 0 0 100 
20 esc16e 28 28 28 0,17 1,45 0 0 100 

21 esc16g 26 26 26 0,07 0,75 0 0 100 
22 esc32a 130 146 154,4 17,86 18,91 18,76923077 2,641979023 0 
23 esc32e 2 2 2 0.16 0.27 0 0 100 
24 esc32g 6 6 6 0,21 0,84 0 0 100 

25 esc32h 438 438 442,2 10,65 18,24 0,95890411 0,533235012 10 
26 esc64a 116 116 117,2 14,78 57,54 1,034482759 0,995042985 45 
27 had12 1652 1652 1652,7 0,16 1,32 0,042372881 0,110082927 80 
28 had14 2724 2724 2724 0,3 1,01 0 0 100 

29 had20 6922 6922 6930,5 1,7 6,21 0,12279688 0,101568084 20 
30 kra30a 88900 90700 92239,5 13,54 14,42 3,756467942 0,821466726 0 
31 kra30b 91420 92690 93568 13,13 14,1 2,349595275 0,774189402 0 
32 ste36a 9526 9974 10224,8 18,97 21,01 7,335712786 1,932130437 0 

33 tai12a 224416 224416 224416 0,27 0,64 0 0 100 
34 tai12b 39464925 39464925 39464925 0,12 0,41 0 0 100 
35 tai15a 388214 388214 391427,1 3,45 3,64 0,827662063 0,461065545 5 
36 tai15b 51765268 51765268 51784256,4 0,45 2,24 0,036681738 0,066166326 75 

37 tai17a 491812 497732 500698,7 4,45 4,66 1,80693029 0,440269737 0 
38 tai20a 703482 703482 722071,7 5,81 6,49 2,642526746 0,770234121 5 
39 tai20b 122455319 122455319 122805668,4 2,75 5,95 0,286103824 0,210481236 30 

40 tai25a 1167256 1195890 1207142,1 9,07 9,58 3,417082457 0,477694806 0 
41 tai25b 344355646 344355646 345430769,7 5,54 9,14 0,312213162 0,340907718 20 
42 tai30a 1818146 1875012 1893483,6 11,56 12,04 4,14364963 0,482280256 0 
43 tai30b 637117113 638977983 644659684,1 11,87 31,91 1,183859442 0,802901585 0 

44 tai35a 2422002 2515012 2530168,5 49,23 52,48 4,465995486 0,340321432 0 
45 tai35b 283315445 284893963 289765692,6 50,45 54,15 2,276701717 1,681206138 0 
46 tai40a 3139370 3246432 3288017,1 22,61 38,88 4,734934079 0,565072522 0 
47 tai40b 637250948 637409733 662512440,4 23,24 25,78 3,964135703 2,253301507 0 

48 tai50a 4938796 5163546 5199574,5 36,87 37,79 5,28020392 0,296115161 0 
49 tai50b 458821517 462945371 472189434,4 36,52 37,61 2,913533227 1,200443005 0 
50 tai60a 7205962 7516098 7597042 52,28 59,87 5,427172666 0,368302781 0 
51 tai60b 608215054 611893551 633742259 52,32 62,97 4,197068912 2,615227554 0 

52 tai64c 1855928 1855928 1857875,9 47,06 75,92 0,10495558 0,084108686 15 
53 tai80a 13499184 14155210 14196342,5 109,62 115,62 5,164449199 0,161305347 0 
54 tai80b 818415043 845088215 861842189,4 109 113,17 5,306249778 0,670824532 0 

55 tai100a 21052466 22064510 22113282,5 199,27 206,54 5,038918006 0,106372369 0 
56 tai100b 1185996137 1215752011 1228796991 204,57 220,1 3,608852695 0,841996962 0 

 

 

5.3. Discussion of results 

We performed several tests on a set of different instances. Moreover, the Table 2 summarizes the 

numerical results of the CSO-QAP algorithm for 56 instances of 20 runs, we can notice that the optimal 

solutions is found in 60% of the instances especially with small size. The results in Table 2 summarizes the 

obtained results by applying the CSO-QAP for 56 instances of QAPLIB over 20 independent runs. The first 

column is the name of instance; the Sopt indicated in the column two present the best Known solution of 

each instance in the QAPLIB documentation, the third column present the best found solution by the CSO-

QAP (BFS), the average of the best found solution avg is indicated in the fourth column. The remaining 

columns contains the measures use to perform the quality of the solution which are: the best run time T best, 
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the time average Tavg, the average percentage of error Err in 16,the percentage of the Standard Deviation 

PSD in 15 and the last column is the percentage to get the BFS (Succ). The quality of solution is measured 

by: 1) The percentage of the Standard Deviation as: 

 

100
avg

SD
PSD


                         (14) 
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2) The error percentage is calculated by:       (15) 
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5.3. Comparison with other metaheuristic 

We compare the average percentage of error to get the best Known solution in our proposed work 

with the results obtained by applying a simple genetic algorithm using sequential constructive crossover for 

the quadratic assignment problem [27]. In this contribution of Genetic algorithm, SCX is applied to solve the 

quadratic assignment problem without using the local search to improve the results, therefore the GA has 

been run on a computer with Intel(R) Core(TM) i7-3770 CPU @3.40GHz and 8.00 GB RAM. Figure 11 

shows that the proposed CSO-QAP is much better in term of the average percentage of error than SCX in the 

GA contribution. 

Furthermore, in order to prove the robustness of the algorithm, Figure 12 presents a comparison 

between CSO-QAP and SCX [27]. The average of time obtained by the CSO-QAP is almost the same of the 

average time obtained by SCX algorithm in most of QAPLIB instances especially in small instance as shows 

in Figure 10; it is obvious that CSO-QAP method is very effective to solve the QAP instances (tai20a, tai20b, 

tai25a, tai25b, tai30a) in a reasonable time. 

 

 

6. CONCLUSION 

In this paper, we applied chicken swarm optimization (CSO), as metaheuristic for solving the QAP 

without using a local search. We compare as well the solution found with the best -known solution, which is 

introduced in QAPLIB. The results show that the proposed algorithm have effectively demonstrated the 

ability to solve QAP and obtain a promising results in terms of the quality of solutions and the computing 

time .The obtained results are compared with the SCX in the GA contribution. CSO-QAP takes advantage of 

intensification, diversification approaches, the movement of searching for food could be seen as 

intensification, and the diversification could be represented by the reorganization of the swarm. 

In future research, we can conduct different comparisons between several metaheuristics by using 

different instances of QAP. We can also add low-level heuristics to solve effectively the quadratic 

assignment problem then we will aim to applicate the improved CSO-QAP algorithm in other combinatorial 

optimization problems, especially for problems with high dimensions. 
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