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1. INTRODUCTION 

Many authors have studied queueing models by importing many aspects on them such as server 
vacation, breakdown, repair, reneging, balking etc. 

A batch arrival queueing model with different vacation policies is studied by numerous authors 
including R. Vimaladevi [1], G.Ayyappan & S.Shyamala [2] and Ke.J.C, Huang.H.I and Chu.Y.K [3]. G. 
Ayyappan and S. Shyamala [4] obtained transient state and steady state of batch arrival queue subject to 
random breakdowns and Bernoulli schedule server vacation with second optional repair. Khalaf [5] studied 
the single stage queueing model with single original and extended vacation having breakdown with delay 
time and the system equipped with a stand-by-server works during the main server stops. Monita Baruah, 
K.C.Madan and Tillal Eldabi [6] studied a two stage batch arrival queue with reneging during vacation and 
breakdown periods. Batch arrival retrial queue with multi optional repair is discussed by D.Sumitha and 
K.Udaya Chandrika [7]. Multistage Batch arrival queue subject to different vacation policy with two phases 
of repair is discussed in C.Yuvarani and C.Vijayalakshmi [8]. 

In this work, we consider M[x]/G/1 queue with ‘N’ stages of services under different vacation 
policy and extended vacation subject to system breakdown with delay time and two phase of repairs. In 
addition, we assume that the customers may renege during breakdown or vacation period due to impatience. 

This paper is organized as follows. The assumptions of our model are given in section 2. Definitions 
and Equations governing the system are given in section 3. The time dependent solutions have been obtained 
in section 4 and corresponding steady state results have been derived explicitly in section 5. Mean queue size 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 1, July 2018 :  275 – 283 

276 

and mean waiting time are computed in section 6. Some particular cases are discussed in section 7 and the 
numerical results are given in section 8. 
 
 
2. MODEL ASSUMPTIONS 

We assume the following to describe the queueing model of our study. 
a) The mean arrival rate of customers in batches is λ and they are served one by one on a first come - first 

served basis. The first order probability that a batch of i customers arrives at the system during a short 
interval of time (t; t + dt] is λcidt (i ≥1), where 0 ≤ ci ≤ 1 and ∑ 𝑐𝑖 = 1∞

𝑖=1 . 
b) A single server provides ‘N’ stages of services for each customer, with the service times having general 

distribution. Let Bi(x) and bi(x) (i =1, 2, 3,…,N) be the distribution and the density function of i stage 
service respectively. Let dxxi )(µ  be the conditional probability density of service completion during 
the interval (x; x + dx], given that the elapsed time is x, so that 
 

)(xiµ = 𝑏𝑖(𝑥)
1−𝐵𝑖(𝑥)
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c) After service completion of a customer, the server may remain in the system to serve the next customer 

with probability 0β  or he may proceed on jth vacation scheme with probability jβ  )1( Mj ≤≤  and 

∑ 𝛽𝑗 = 1𝑀
𝑗=0 . The server’s vacation time follows a general (arbitrary) distribution with distribution 

function Vj(x) and density function vj(x). Let dxxj )(γ  be the conditional probability of a completion of 
a vacation during the interval (x; x + dx] given that the elapsed vacation time is x, so that 
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d) Once the original vacation gets over, the server has an option of taking an extended vacation with 

probability p or he may rejoin the system immediately with probability 1-p. The server’s extended 
vacation time follows a general (arbitrary) distribution with distribution function Wj(x) and density 
function wj(x). Let dxxj )(θ  be the conditional probability of a completion of a extended vacation 
during the interval (x; x + dx] given that the elapsed extended vacation time is x, so that 
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e) Reneging is assumed to follow exponential distribution with parameter η. Thus ηdt is the probability that 

a customer can renege during a short interval of time (t; t + dt]. 
f) Once the server breakdown, the repair do not start immediately. There is a delay time to start the repairs. 

The      delay time follows general distribution with distribution and density function H(x) and h(x) 
respectively. Let dxx)(φ  be the conditional probability of a completion of a delay time during the 
interval (x; x + dx] given that the elapsed delay time is x, so that 
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g) The server breakdown is assumed to occur according to a poisson stream with mean breakdown rate α > 
0. 

h) When the server breakdown the repair process may start any time. First the server sent for first essential 
repair (FER). After the completion of FER, the server may opt for the second optional repair (SOR) with 
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probability r or may join the system with probability 1-r to render the service to the customers. 
i) Both the repair process FER and SOR follows a general (arbitrary) distribution with distribution function 

Uj(x) and density function uj(x) for j =1,2 respectively. Let dxx)(1κ  and dxx)(2κ  
be the conditional 

probability of a completion of a FER and SOR  during the interval (x; x + dx] given that the elapsed 
repair time is x, so that 
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The stand-by server provide service to the customers when the main server is on vacation, extended 

vacation, waiting for repair to start or under repair until the main server returns. The stand-by service time is 
assumed to follow exponential distribution with parameter δ. 

 
 
3. DEFINITIONS AND EQUATIONS GOVERNING THE SYSTEM 

We define 

(i)  ),()( txP i
n  denotes the probability that there are ‘n’ (n ≥ 0) customers in the queue excluding the one in 

service at time t and the server is active providing i th stage (i =1, 2, 3,…,N) of service with the elapsed 
service time for this customer is x and its corresponding probability irrespective of value of x is denoted by 

)()( tP i
n . 

(ii)  ),()( txV j
n  denotes the probability that at time t, the server is on j th vacation  (j =1, 2, 3,…,M)  and 

there are ‘n’ (n ≥ 1) customers waiting in the queue for service and its corresponding probability irrespective 

of value of x is denoted by )()( tV j
n . 

(iii)  Rn
(1)(x,t) denotes the probability that at time t, the server is inactive due to breakdown and the system is 

under FER while there are ‘n’ (n ≥ 0) customers in the queue and its corresponding probability irrespective 
of value of x is denoted by Rn

(1)(t). 
(iv)  Rn

(2)(t) denotes the probability that at time t, the server is inactive due to breakdown and the system is 
under SOR while there are ‘n’ (n ≥ 0) customers in the queue and its corresponding probability irrespective 
of value of x is denoted by Rn

(2)(t). 
(v)  Q(t) = Probability that at time t, there are no customers in the queue and the server is idle but available in 
the system. 

(vi) ),()( txE j
n  denotes the probability that at time t, the server is on  j th extended vacation  (j =1, 2, 

3,…,M)  and there are ‘n’ (n ≥ 1) customers waiting in the queue for service and its corresponding 

probability irrespective of value of x is denoted by )()( tE j
n . 

(vii) Dn(x,t) denotes the probability that there are ‘n’ (n ≥ 0) customers waiting in the queue for service at 
time t, and the server is waiting for repair to start with elapsed delay time x and its corresponding probability 
irrespective of value of x is denoted by Dn(t). 
 

The queueing model is then, governed by the following set of differential-difference equations: 
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The above equations are to be solved subject to the following boundary conditions:
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 We assume that initially there are no customers in the system and the server is idle. So the initial 

conditions are
 0)0()0( )()(
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n
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nP  for  n = 0, 1, 2, …,     i =1, 2, 3,…,N                                                                             

 
 
4. THE TIME-DEPENDENT SOLUTION 

By using the supplementary variable technique, we obtain the following transient solution  
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where DR is given by
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5. THE STEADY STATE RESULTS 

By using the property 
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Let Wq(z) be the PGF of queue size irrespective of the state of the system. Then we have,
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6. THE MEAN QUEUE SIZE AND THE SYSTEM SIZE 

Let Lq denote the mean number of customers in the queue under the steady state, then 
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2 RrERERE +=  and ))1(( −IIE is the second factorial moment of the batch size of arriving 

customers and 
)()()()()()()()()()( 212121 αααααααααα NNN BBBBBBBBBB ′++′+′=′ KKKK . Then, if 

we substitute the values )1(),1(),1(),1( DDNN ′′′′′′  in Lq, We get the performance measure in the closed 
form. 
 
7. PARTICULAR CASES 

Our queueing system can be considered as a very general system and lot of systems already studied 
can be a particular case of our system. 
 
Case (i) No Reneging 
 If we assume there is no reneging, single stage of service , single vacation policy and there is no 
second optional repair then )()()( 1111 eVEpVEVE ββ += , )()( 1RERE = , )()( 1 αα BB = , 

z
zCm δδλ −+−= ))(1(  

also we get 
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The above result agrees with the result of Khalaf.R.F [5]  
 
Case (ii) No Delay, No standby Server, No Extended Vacation, No Optional Repair 
 If we assume there is no delay, standby server, extended vacation and second optional repair with 
two stages of service having single vacation policy then )()( 11 VEVE β= , )()( 1RERE = , 

)()()( 21 ααα BBB = ,  
z
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also we get 
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The above result agrees with the result given Monita Baruah et al.,[6]  

 
8. NUMERICAL RESULT 

In order to examine the validity of the results we approach numerical result. For that purpose we 
assume service time, vacation time, extended vacation time, delay time, FER and SOR are all follows 
exponential distribution and we choose the following arbitrary values : N =1 , M = 1 (single server and single 
vacation),  

0,5,2
;5.0;5.0;5.0,5,4;5,7;2;0))1((;1)( 12111

===
=========−=

δηα
βκκγµλ prIIEIE

 

 
 

Table 1. Computed Values of Various Queue Characteristics 
θ

 
φ Q  ρ  Lq Wq 

4 
7 

10 
12 

3 0.8585 
0.8684 
0.8724 
0.8739 

0.1415 
0.1416 
0.1276 
0.1261 

0.6288 
0.6019 
0.5931 
0.59 

0.3144 
0.3010 
0.2966 
0.295 

4 
7 

10 
12 

5 0.8314 
0.8434 
0.8482 
0.85 

0.1686 
0.1566 
0.1518 
0.15 

0.7024 
0.6819 
0.6757 
0.6737 

0.3512 
0.3409 
0.3379 
0.3369 
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    This table clearly shows that as the delay time and the extended vacation time increases, the 
server idle time increases and the utilization factor decreases. 
 
 
9. CONCLUSION 

We have studied M[x]/G/1 queue with ‘N’ stages of services under different vacation policy and 
extended vacation subject to system breakdown with delay time and two phase of repairs. In addition we 
assume that the customers may renege during breakdown or vacation period due to impatience. The service 
time, vacation time, extended vacation time, delay time and repair are all follow general distribution. This 
work presents the closed form of the important performance measure. Many queueing system studied already 
are the special cases of this model. 
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